Self-Powered Hybrid Motion and Health Sensing System Based on Triboelectric Nanogenerators

被引:8
|
作者
Zhang, Maoqin [1 ]
Yan, Wei [1 ]
Ma, Weiting [2 ]
Deng, Yuheng [1 ]
Song, Weixing [1 ]
机构
[1] Capital Normal Univ, Dept Chem, Beijing Key Lab Opt Mat & Photon Devices, Beijing 100048, Peoples R China
[2] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing Key Lab Electrochem Proc & Technol Mat, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
biomedical sensors; health monitoring; physiological signal detection; triboelectric nanogenerators; PRESSURE SENSORS; ELECTRODE; STORAGE;
D O I
10.1002/smll.202402452
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Triboelectric nanogenerator (TENG) represents an effective approach for the conversion of mechanical energy into electrical energy and has been explored to combine multiple technologies in past years. Self-powered sensors are not only free from the constraints of mechanical energy in the environment but also capable of efficiently harvesting ambient energy to sustain continuous operation. In this review, the remarkable development of TENG-based human body sensing achieved in recent years is presented, with a specific focus on human health sensing solutions, such as body motion and physiological signal detection. The movements originating from different parts of the body, such as body, touch, sound, and eyes, are systematically classified, and a thorough review of sensor structures and materials is conducted. Physiological signal sensors are categorized into non-implantable and implantable biomedical sensors for discussion. Suggestions for future applications of TENG-based biomedical sensors are also indicated, highlighting the associated challenges. This review comprehensively introduces the remarkable achievements of triboelectric nanogenerators-based human sensing devices in recent years, focusing on human health sensing solutions such as human motion and physiological signal detection. Systematically categorizes movements from different parts of the body, touch, sound, and eyes, and provides a comprehensive review of the sensors' structure and materials. image
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Self-powered smart agriculture sensing using triboelectric nanogenerators based on living plant leaves
    Luo, Yu
    Cao, Xia
    Wang, Zhong Lin
    NANO ENERGY, 2023, 107
  • [32] Nanogenerators for Self-Powered Gas Sensing
    Zhen Wen
    Qingqing Shen
    Xuhui Sun
    Nano-Micro Letters, 2017, 9
  • [33] Nanogenerators for Self-Powered Gas Sensing
    Zhen Wen
    Qingqing Shen
    Xuhui Sun
    Nano-Micro Letters, 2017, (04) : 81 - 99
  • [34] Nanogenerators for Self-Powered Gas Sensing
    Wen, Zhen
    Shen, Qingqing
    Sun, Xuhui
    NANO-MICRO LETTERS, 2017, 9 (04)
  • [35] Nanogenerators for Self-Powered Gas Sensing
    Zhen Wen
    Qingqing Shen
    Xuhui Sun
    Nano-Micro Letters, 2017, 9 (04) : 81 - 99
  • [36] Revolutionizing self-powered robotic systems with triboelectric nanogenerators
    Hajra, Sugato
    Panda, Swati
    Khanberh, Hamideh
    Vivekananthan, Venkateswaran
    Chamanehpour, Elham
    Mishra, Yogendra Kumar
    Kim, Hoe Joon
    NANO ENERGY, 2023, 115
  • [37] Toward self-powered photodetection enabled by triboelectric nanogenerators
    Wen, Zhen
    Fu, Jingjing
    Han, Lei
    Liu, Yina
    Peng, Mingfa
    Zheng, Li
    Zhu, Yuyan
    Sun, Xuhui
    Zi, Yunlong
    JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (44) : 11893 - 11902
  • [38] A Self-Powered Flow Velocity Sensing System Based on Hybrid Piezo-Triboelectric Nanogenerator
    Ge, Chengpeng
    Ma, Jijie
    Hu, Yili
    Li, Jianping
    Zhang, Yu
    He, Xinsheng
    Cheng, Tinghai
    Wen, Jianming
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (05)
  • [39] Recent Progress in Self-powered Graphene-Based Triboelectric Nanogenerators
    Salemi, F.
    Karimzadeh, F.
    Abbasi, M. H.
    Moradi, F.
    Kim, J.
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, 2025, 12 (02) : 749 - 779
  • [40] Implantable Triboelectric Nanogenerators for Self-Powered Cardiovascular Healthcare
    Che, Ziyuan
    O'Donovan, Sarah
    Xiao, Xiao
    Wan, Xiao
    Chen, Guorui
    Zhao, Xun
    Zhou, Yihao
    Yin, Junyi
    Chen, Jun
    SMALL, 2023, 19 (51)