Confidence-Guided Centroids for Unsupervised Person Re-Identification

被引:1
|
作者
Miao, Yunqi [1 ]
Deng, Jiankang [2 ]
Ding, Guiguang [3 ]
Han, Jungong [4 ]
机构
[1] Univ Warwick, Warwick Mfg Grp WMG, Coventry CV47AL, England
[2] Imperial Coll London, Dept Comp, London SW7 2AZ, England
[3] Tsinghua Univ, Sch Software, Beijing 100084, Peoples R China
[4] Univ Sheffield, Dept Comp Sci, Sheffield S10 2TN, England
基金
中国国家自然科学基金;
关键词
Training; Reliability; Representation learning; Noise; Visualization; Cameras; Prototypes; Person re-identification; unsupervised learning; centroid; visual surveillance;
D O I
10.1109/TIFS.2024.3414310
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Unsupervised person re-identification (ReID) aims to train a feature extractor for identity retrieval without exploiting identity labels. Due to the no-reference trust in imperfect clustering results, the learning is inevitably misled by unreliable pseudo labels. Albeit the pseudo label refinement has been investigated by previous works, they generally leverage auxiliary information such as camera IDs and body part predictions. This work explores the internal characteristics of clusters to refine pseudo labels. To this end, Confidence-Guided Centroids (CGC) are proposed to provide reliable cluster-wise prototypes for feature learning. Since samples with high confidence are exclusively involved in the formation of centroids, the identity information of low-confidence samples, i.e., boundary samples, are NOT likely to contribute to the corresponding centroid. Given the new centroids, the current learning scheme, where samples are forced to learn from their assigned centroids solely, is unwise. To remedy the situation, we propose to use Confidence-Guided pseudo Label (CGL), which enables samples to approach not only the originally assigned centroid but also other centroids that are potentially embedded with their identity information. Empowered by confidence-guided centroids and labels, our method yields comparable performance with, or even outperforms, state-of-the-art pseudo label refinement works that largely leverage auxiliary information.
引用
收藏
页码:6471 / 6483
页数:13
相关论文
共 50 条
  • [31] Unsupervised person Re-identification: A review of recent works
    Jahan, Meskat
    Hassan, Manajir
    Hossin, Sahadat
    Hossain, Iftekhar
    Hasan, Mahmudul
    NEUROCOMPUTING, 2024, 572
  • [32] Implicit Sample Extension for Unsupervised Person Re-Identification
    Zhang, Xinyu
    Li, Dongdong
    Wang, Zhigang
    Wang, Jian
    Ding, Errui
    Shi, Javen Qinfeng
    Zhang, Zhaoxiang
    Wang, Jingdong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 7359 - 7368
  • [33] Unsupervised Pre-training for Person Re-identification
    Fu, Dengpan
    Chen, Dongdong
    Bao, Jianmin
    Yang, Hao
    Yuan, Lu
    Zhang, Lei
    Li, Houqiang
    Chen, Dong
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 14745 - 14754
  • [34] Unsupervised Person Re-Identification With Stochastic Training Strategy
    Liu, Tianyang
    Lin, Yutian
    Du, Bo
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 4240 - 4250
  • [35] Unsupervised Person Re-Identification Based on Measurement Axis
    Li, Jiahan
    Cheng, Deqiang
    Liu, Ruihang
    Kou, Qiqi
    Zhao, Kai
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 379 - 383
  • [36] Unsupervised Person Re-Identification Based on Intermediate Domains
    Jiao, Haijie
    Ding, Mengyuan
    Zhang, Shanshan
    FOURTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING, ICGIP 2022, 2022, 12705
  • [37] Comparison on Unsupervised Person Re-identification: Methods and Experiments
    Xiang, Yanxin
    SECOND IYSF ACADEMIC SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND COMPUTER ENGINEERING, 2021, 12079
  • [38] Exploiting robust unsupervised video person re-identification
    Zang, Xianghao
    Li, Ge
    Gao, Wei
    Shu, Xiujun
    IET IMAGE PROCESSING, 2022, 16 (03) : 729 - 741
  • [39] Camera Contrast Learning for Unsupervised Person Re-Identification
    Zhang, Guoqing
    Zhang, Hongwei
    Lin, Weisi
    Chandran, Arun Kumar
    Jing, Xuan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (08) : 4096 - 4107
  • [40] Unsupervised Person Re-Identification Based on Quadratic Clustering
    Xiong, Mingfu
    Xiao, Yingxiong
    Chen, Jia
    Hu, Xinrong
    Peng, Tao
    Computer Engineering and Applications, 2024, 60 (01) : 227 - 235