CNN-LSTM model for solar radiation prediction: performance analysis

被引:0
|
作者
Eslik, Ardan Hueseyin [1 ]
Sen, Ozan [2 ]
Serttas, Fatih [1 ]
机构
[1] Afyon Kocatepe Univ, Fac Engn, Dept Elect Engn, TR-03204 Afyonkarahisar, Turkiye
[2] Afyon Kocatepe Univ, Fac Technol, Dept Mech Engn, TR-03204 Afyonkarahisar, Turkiye
关键词
Solar Radiation Prediction; Deep Learning; Time Series Prediction; Long-Short-Term Memory; Machine learning; FORECASTS;
D O I
10.17341/gazimmfd.1243823
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Purpose: Due to the need for clean and sustainable energy worldwide, the interest in solar energy production is increasing daily. This study aims to create an efficient forecasting model by using a combination of CNN and LSTM techniques. The aim is to show that the proposed deep learning -based model outperforms traditional machine learning models. Theory and Methods: Modeling solar radiation data with high variability is a complex problem, and nonlinear methods are needed. In this context, a hybrid model consisting of Convolutional Neural Network (CNN) and Long Short -Term Memory (LSTM) networks is proposed for solar radiation prediction. The study used measured solar radiation values from a pyranometer located on the Afyon Kocatepe University campus. The performance and applicability of the proposed model are examined by comparing it with different machine learning methods such as Decision Tree Regression, Random Forest Regression, and K -Nearest Neighbor. Results: The prediction performance of the proposed hybrid model is compared with other machine learning methods using four different statistical evaluation criteria (MAE, RMSE, MAPE, and r2). The results revealed that the proposed hybrid model is the most successful prediction model by all statistical evaluation criteria compared to other benchmarking models. Conclusion: In this study, a hybrid deep learning model consisting of CNN and LSTM networks is proposed to predict mean solar radiation during the day, and the performance and applicability of the method are investigated. The results revealed that the proposed CNN+LSTM hybrid deep learning model gives better results than machine learning algorithms in all RMSE, MAE, MAPE, and r 6 statistical evaluation criteria and can be used effectively in predicting daily average solar radiation.
引用
收藏
页码:2155 / 2162
页数:8
相关论文
共 50 条
  • [21] Dimensional Sentiment Analysis Using a Regional CNN-LSTM Model
    Wang, Jin
    Yu, Liang-Chih
    Lai, K. Robert
    Zhang, Xuejie
    PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2016), VOL 2, 2016, : 225 - 230
  • [22] An Advanced CNN-LSTM Model for Cryptocurrency Forecasting
    Livieris, Ioannis E.
    Kiriakidou, Niki
    Stavroyiannis, Stavros
    Pintelas, Panagiotis
    ELECTRONICS, 2021, 10 (03) : 1 - 16
  • [23] Vehicle Road Grade Prediction Based on CNN-LSTM
    Qin, Tang
    Yao, Zhuoxiao
    Fan, Honggang
    Xia, Ran
    Chen, Tao
    IFAC PAPERSONLINE, 2023, 56 (02): : 3066 - 3071
  • [24] Event prediction within directional change framework using a CNN-LSTM model
    Rostamian, Ahoora
    O'Hara, John G.
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (20): : 17193 - 17205
  • [25] A Hybrid CNN-LSTM Model for Aircraft 4D Trajectory Prediction
    Ma, Lan
    Tian, Shan
    IEEE ACCESS, 2020, 8 (134668-134680) : 134668 - 134680
  • [26] A Prediction Method for Fuel Cell Degradation Based on CNN-LSTM Hybrid Model
    Zhang, Yufan
    Li, Yuren
    Liang, Bo
    Ma, Rui
    2022 25TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS 2022), 2022,
  • [27] Sentimental prediction model of personality based on CNN-LSTM in a social media environment
    Zhao, Jinghua
    Lin, Jie
    Liang, Shuang
    Wang, Mengjiao
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (02) : 3097 - 3106
  • [28] A study on water quality prediction by a hybrid CNN-LSTM model with attention mechanism
    Yang, Yurong
    Xiong, Qingyu
    Wu, Chao
    Zou, Qinghong
    Yu, Yang
    Yi, Hualing
    Gao, Min
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (39) : 55129 - 55139
  • [29] Edible Mushroom Greenhouse Environment Prediction Model Based on Attention CNN-LSTM
    Huang, Shuanggen
    Liu, Quanyao
    Wu, Yan
    Chen, Minmin
    Yin, Hua
    Zhao, Jinhui
    AGRONOMY-BASEL, 2024, 14 (03):
  • [30] A study on water quality prediction by a hybrid CNN-LSTM model with attention mechanism
    Yurong Yang
    Qingyu Xiong
    Chao Wu
    Qinghong Zou
    Yang Yu
    Hualing Yi
    Min Gao
    Environmental Science and Pollution Research, 2021, 28 : 55129 - 55139