CNN-LSTM model for solar radiation prediction: performance analysis

被引:0
|
作者
Eslik, Ardan Hueseyin [1 ]
Sen, Ozan [2 ]
Serttas, Fatih [1 ]
机构
[1] Afyon Kocatepe Univ, Fac Engn, Dept Elect Engn, TR-03204 Afyonkarahisar, Turkiye
[2] Afyon Kocatepe Univ, Fac Technol, Dept Mech Engn, TR-03204 Afyonkarahisar, Turkiye
关键词
Solar Radiation Prediction; Deep Learning; Time Series Prediction; Long-Short-Term Memory; Machine learning; FORECASTS;
D O I
10.17341/gazimmfd.1243823
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Purpose: Due to the need for clean and sustainable energy worldwide, the interest in solar energy production is increasing daily. This study aims to create an efficient forecasting model by using a combination of CNN and LSTM techniques. The aim is to show that the proposed deep learning -based model outperforms traditional machine learning models. Theory and Methods: Modeling solar radiation data with high variability is a complex problem, and nonlinear methods are needed. In this context, a hybrid model consisting of Convolutional Neural Network (CNN) and Long Short -Term Memory (LSTM) networks is proposed for solar radiation prediction. The study used measured solar radiation values from a pyranometer located on the Afyon Kocatepe University campus. The performance and applicability of the proposed model are examined by comparing it with different machine learning methods such as Decision Tree Regression, Random Forest Regression, and K -Nearest Neighbor. Results: The prediction performance of the proposed hybrid model is compared with other machine learning methods using four different statistical evaluation criteria (MAE, RMSE, MAPE, and r2). The results revealed that the proposed hybrid model is the most successful prediction model by all statistical evaluation criteria compared to other benchmarking models. Conclusion: In this study, a hybrid deep learning model consisting of CNN and LSTM networks is proposed to predict mean solar radiation during the day, and the performance and applicability of the method are investigated. The results revealed that the proposed CNN+LSTM hybrid deep learning model gives better results than machine learning algorithms in all RMSE, MAE, MAPE, and r 6 statistical evaluation criteria and can be used effectively in predicting daily average solar radiation.
引用
收藏
页码:2155 / 2162
页数:8
相关论文
共 50 条
  • [1] A CNN-LSTM Model for Tailings Dam Risk Prediction
    Yang, Jun
    Qu, Jingbin
    Mi, Qiang
    Li, Qing
    IEEE ACCESS, 2020, 8 (08): : 206491 - 206502
  • [2] Projectile Trajectory Prediction Based on CNN-LSTM Model
    Zheng Z.
    Guan X.
    Fu J.
    Ma X.
    Yin S.
    Binggong Xuebao/Acta Armamentarii, 2023, 44 (10): : 2975 - 2983
  • [3] CNN-LSTM Coupled Model for Prediction of Waterworks Operation
    Cao, Kerang
    Kim, Hangyung
    Hwang, Chulhyun
    Jung, Hoekyung
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2018, 14 (06): : 1508 - 1520
  • [4] Solar Power Forecasting Using CNN-LSTM Hybrid Model
    Lim, Su-Chang
    Huh, Jun-Ho
    Hong, Seok-Hoon
    Park, Chul-Young
    Kim, Jong-Chan
    ENERGIES, 2022, 15 (21)
  • [5] Solar Power Prediction Using Dual Stream CNN-LSTM Architecture
    Alharkan, Hamad
    Habib, Shabana
    Islam, Muhammad
    SENSORS, 2023, 23 (02)
  • [6] A CNN-LSTM Ship Motion Extreme Value Prediction Model
    Zhan K.
    Zhu R.
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2023, 57 (08): : 963 - 971
  • [7] Prediction of Passenger Flow Based on CNN-LSTM Hybrid Model
    Wang Yu
    Wang Zhifei
    Wang Hongye
    Zhnag Junfeng
    Feng Ruilong
    2019 12TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID 2019), 2019, : 132 - 135
  • [8] Motion trajectory prediction based on a CNN-LSTM sequential model
    Guo Xie
    Anqi Shangguan
    Rong Fei
    Wenjiang Ji
    Weigang Ma
    Xinhong Hei
    Science China Information Sciences, 2020, 63
  • [9] Research on Traffic Crash Prediction Based on CNN-LSTM Model
    Wang, Shaohua
    Zhang, Sinan
    Lu, Lei
    Zhang, Keke
    Liu, Xia
    Chen, Ning
    CICTP 2023: INNOVATION-EMPOWERED TECHNOLOGY FOR SUSTAINABLE, INTELLIGENT, DECARBONIZED, AND CONNECTED TRANSPORTATION, 2023, : 1185 - 1193
  • [10] Motion trajectory prediction based on a CNN-LSTM sequential model
    Guo XIE
    Anqi SHANGGUAN
    Rong FEI
    Wenjiang JI
    Weigang MA
    Xinhong HEI
    Science China(Information Sciences), 2020, 63 (11) : 248 - 268