A RAPID PREDICTION MODEL FOR VIEW-BASED GLARE PERFORMANCE WITH MULTIMODAL GENERATIVE ADVERSARIAL NETWORKS

被引:0
|
作者
Li, Xiaoqian [1 ]
Han, Zhen [2 ]
Liu, Gang [1 ]
Stouffs, Rudi [2 ]
机构
[1] Tianjin Univ, Sch Architecture, Tianjin, Peoples R China
[2] Natl Univ Singapore, Dept Architecture, Singapore, Singapore
关键词
Glare Prediction; Prediction Model; Multimodal Model; Generative Adversarial Networks;
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Machine learning-based glare prediction has greatly improved the efficiency of performance feedback. However, its limited generalizability and the absence of intuitive predictive indicators have constrained its practical application. In response, this study proposes a prediction model for luminance distribution images based on the multimodal learning approach. This model focuses on objects within the field of view, integrating spatial and material features through images. It also employs semantic feature mapping and multimodal data integration to flexibly represent building information, removing limitations on model validity imposed by changes in design scenarios. Additionally, the study proposes a multimodal Generative Adversarial Network tailored for the multimodal inputs. This network is equipped with unique feature fusion and reinforcement blocks, along with advanced up-sampling techniques, to efficiently distill and extract pertinent information from the inputs. The model's efficacy is verified by cases focusing on residential building luminance distribution, with a 97% improvement in computational speed compared to simulation methods. Offering both speed and accuracy, this model provides designers with a rapid, flexible, and intuitive supporting approach for daylight performance optimization design, particularly beneficial in the early design stage.
引用
收藏
页码:29 / 38
页数:10
相关论文
共 50 条
  • [41] PathGAN: Visual Scanpath Prediction with Generative Adversarial Networks
    Assens, Marc
    Giro-i-Nieto, Xavier
    McGuinness, Kevin
    O'Connor, Noel E.
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT V, 2019, 11133 : 406 - 422
  • [42] TYPHOON CLOUD PREDICTION VIA GENERATIVE ADVERSARIAL NETWORKS
    Li, Hui
    Yu, Xingrui
    Ren, Peng
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 3023 - 3026
  • [43] A Pedestrian Trajectory Prediction Model Based on Generative Adversarial Mimicry Learning
    Li, Mingyue
    Fei, Rong
    Li, Aimin
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE AND DIGITAL APPLICATIONS, MIDA2024, 2024, : 262 - 268
  • [44] GA-Based Optimization of Generative Adversarial Networks on Stock Price Prediction
    He, Bate
    Kita, Eisuke
    2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI 2021), 2021, : 199 - 202
  • [45] Prediction Method of Multiple Related Time Series Based on Generative Adversarial Networks
    Wu, Weijie
    Huang, Fang
    Kao, Yidi
    Chen, Zhou
    Wu, Qi
    INFORMATION, 2021, 12 (02) : 1 - 16
  • [46] DSAL-GAN: Denoising Based Saliency Prediction with Generative Adversarial Networks
    Mukherjee, Prerana
    Sharma, Manoj
    Makwana, Megh
    Singh, Ajay Pratap
    Upadhyay, Avinash
    Trivedi, Akkshita
    Lall, Brejesh
    Chaudhury, Santanu
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2021, 2024, 13102 : 568 - 576
  • [47] A new method based on generative adversarial networks for multivariate time series prediction
    Qin, Xiwen
    Shi, Hongyu
    Dong, Xiaogang
    Zhang, Siqi
    EXPERT SYSTEMS, 2024, 41 (12)
  • [48] Vehicle Trajectory Prediction at Intersections using Interaction based Generative Adversarial Networks
    Roy, Debaditya
    Ishizaka, Tetsuhiro
    Mohan, C. Krishna
    Fukuda, Atsushi
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 2318 - 2323
  • [49] A Pedestrian Trajectory Prediction Method for Generative Adversarial Networks Based on Scene Constraints
    Ma, Zhongli
    An, Ruojin
    Liu, Jiajia
    Cui, Yuyong
    Qi, Jun
    Teng, Yunlong
    Sun, Zhijun
    Li, Juguang
    Zhang, Guoliang
    ELECTRONICS, 2024, 13 (03)
  • [50] Improving Prediction Accuracy in Building Performance Models Using Generative Adversarial Networks (GANs)
    Chokwitthaya, Chanachok
    Collier, Edward
    Zhu, Yimin
    Mukhopadhyay, Supratik
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,