Split Aggregation: Lightweight Privacy-Preserving Federated Learning Resistant to Byzantine Attacks

被引:1
|
作者
Lu, Zhi [1 ]
Lu, SongFeng [1 ]
Cui, YongQuan [1 ]
Tang, XueMing [1 ]
Wu, JunJun [1 ]
机构
[1] Huazhong Univ Sci & Technol, Hubei Engn Res Ctr Big Data Secur, Sch Cyber Sci & Engn, Hubei Key Lab Distributed Syst Secur, Wuhan 430074, Peoples R China
关键词
Privacy; Servers; Robustness; Benchmark testing; Vectors; Data privacy; Homomorphic encryption; Poisoning attack; federated learning; defense; privacy-preserving;
D O I
10.1109/TIFS.2024.3402993
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Federated Learning (FL), a distributed learning paradigm optimizing communication costs and enhancing privacy by uploading gradients instead of raw data, now confronts security challenges. It is particularly vulnerable to Byzantine poisoning attacks and potential privacy breaches via inference attacks. While homomorphic encryption and secure multi-party computation have been employed to design robust FL mechanisms, these predominantly rely on Euclidean distance or median-based metrics and often fall short in comprehensively defending against advanced poisoning attacks, such as adaptive attacks. Addressing this issue, our study introduces "Split-Aggregation", a lightweight privacy-preserving FL solution capable of withstanding adaptive attacks. This method maintains a computational complexity of O(d k N+k(3)) and a communication overhead of O(dN) , performing comparably to FedAvg when k=10 . Here, d represents the gradient dimension, N the number of users, and k the rank chosen during random singular value decomposition. Additionally, we utilize adaptive weight coefficients to mitigate gradient descent issues in honest users caused by non-independent and identically distributed (Non-IID) data. The proposed method's security and robustness are theoretically proven, with its complexity thoroughly analyzed. Experimental results demonstrate that at $k=10$ , this method surpasses the top-1 accuracy of current state-of-the-art robust privacy-preserving FL approaches. Moreover, opting for a smaller k significantly boosts efficiency with only marginal compromises in accuracy.
引用
收藏
页码:5575 / 5590
页数:16
相关论文
共 50 条
  • [11] Poisoning attacks resilient privacy-preserving federated learning scheme based on lightweight homomorphic encryption
    Zhang, Chong
    Zhang, Xiaojun
    Yang, Xingchun
    Liu, Bingyun
    Zhang, Yuan
    Zhou, Rang
    INFORMATION FUSION, 2025, 121
  • [12] A Privacy-Preserving Federated Learning Framework With Lightweight and Fair in IoT
    Chen, Yange
    Liu, Lei
    Ping, Yuan
    Atiquzzaman, Mohammed
    Mumtaz, Shahid
    Zhang, Zhili
    Guizani, Mohsen
    Tian, Zhihong
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (05): : 5843 - 5858
  • [13] A survey on privacy-preserving federated learning against poisoning attacks
    Xia, Feng
    Cheng, Wenhao
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (10): : 13565 - 13582
  • [14] Byzantine-Robust and Privacy-Preserving Federated Learning With Irregular Participants
    Chen, Yinuo
    Tan, Wuzheng
    Zhong, Yijian
    Kang, Yulin
    Yang, Anjia
    Weng, Jian
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (21): : 35193 - 35205
  • [15] Toward Secure Weighted Aggregation for Privacy-Preserving Federated Learning
    He, Yunlong
    Yu, Jia
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 3475 - 3488
  • [16] Efficient Verifiable Protocol for Privacy-Preserving Aggregation in Federated Learning
    Eltaras, Tamer
    Sabry, Farida
    Labda, Wadha
    Alzoubi, Khawla
    Malluhi, Qutaibah
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 2977 - 2990
  • [17] TAPFed: Threshold Secure Aggregation for Privacy-Preserving Federated Learning
    Xu, Runhua
    Li, Bo
    Li, Chao
    Joshi, James B. D.
    Ma, Shuai
    Li, Jianxin
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (05) : 4309 - 4323
  • [18] Privacy-Preserving Machine Learning Using Federated Learning and Secure Aggregation
    Lia, Dragos
    Togan, Mihai
    PROCEEDINGS OF THE 2020 12TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTERS AND ARTIFICIAL INTELLIGENCE (ECAI-2020), 2020,
  • [19] Privacy-preserving Aggregation Scheme for Blockchained Federated Learning in IoT
    Fan, Mochan
    Yu, Hongfang
    Sun, Gang
    2021 6TH INTERNATIONAL CONFERENCE ON UK-CHINA EMERGING TECHNOLOGIES (UCET 2021), 2021, : 129 - 132
  • [20] A Lightweight and Accuracy-Lossless Privacy-Preserving Method in Federated Learning
    Liu, Zhen
    Yang, Changsong
    Ding, Yong
    Liang, Hai
    Wang, Yujue
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (03): : 3118 - 3129