An adaptive dynamic phase-field modeling with variable-node elements for thermoelastic fracture in orthotropic media

被引:3
|
作者
He, Jia-Nan [1 ]
Yu, Tiantang [1 ]
Fang, Weihua [2 ]
Natarajan, Sundararajan [3 ]
机构
[1] Hohai Univ, Dept Engn Mech, Nanjing 211100, Peoples R China
[2] Minist Water Resources, Nanjing Res Inst Hydrol & Water Conservat Automat, Nanjing 210012, Peoples R China
[3] Indian Inst Technol Madras, Dept Mech Engn, Chennai 600036, India
基金
中国国家自然科学基金;
关键词
Orthotropic materials; Thermoelastic loading; Dynamic fracture; Hybrid phase-field method; Adaptive local refinement; Variable-node quadrilateral elements; ANISOTROPIC CRACK-PROPAGATION; BRITTLE-FRACTURE; FORMULATION; CONDUCTION; PATH;
D O I
10.1016/j.tafmec.2024.104555
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this work, a novel adaptive algorithm integrated into a dynamic phase-field method is developed to model the fracture of orthotropic materials under thermoelastic loading. The procedure of local refinement is synchronized with crack tip advancement, with the phase-field value serving as the criterion for marking elements. To address mesh refinement inconsistencies, variable-node elements are employed. Hughes-Hilbert- Taylor (HHT) and backward difference method are utilized for time discretization of displacement and temperature, respectively. A penalized structural matrix is incorporated into crack surface density to realize the orthotropy of crack growth. The performance of the proposed method is validated through several numerical benchmarks, i.e., the proposed method can effectively simulate the dynamic crack propagation of orthotropic materials under thermoelastic loading, and can assuage computational overhead while keeping acceptable accuracy.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Adaptive finite element modeling of phase-field fracture driven by hydrogen embrittlement
    Dinachandra, Moirangthem
    Alankar, Alankar
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 391
  • [32] Global-local adaptive meshing method for phase-field fracture modeling
    Cheng, Fengyu
    Yu, Hao
    Wang, Quan
    Huang, Hanwei
    Xu, Wenlong
    Wu, Hengan
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 438
  • [33] A phase-field description of dynamic brittle fracture
    Borden, Michael J.
    Verhoosel, Clemens V.
    Scott, Michael A.
    Hughes, Thomas J. R.
    Landis, Chad M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 217 : 77 - 95
  • [34] Phase-Field Modeling Fracture in Anisotropic Materials
    Li, Haifeng
    Wang, Wei
    Cao, Yajun
    Liu, Shifan
    ADVANCES IN CIVIL ENGINEERING, 2021, 2021
  • [35] A phase-field formulation for dynamic cohesive fracture
    Geelen, Rudy J. M.
    Liu, Yingjie
    Hu, Tianchen
    Tupek, Michael R.
    Dolbow, John E.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 348 : 680 - 711
  • [36] Dynamic fracture analysis of the linearly uncoupled and coupled physical phenomena by the variable-node multiscale XFEM
    Yin, Shuohui
    Zhang, Ning
    Liu, Peng
    Liu, Jingang
    Yu, Tiantang
    Gu, Shuitao
    Cong, Yu
    ENGINEERING FRACTURE MECHANICS, 2021, 254
  • [37] Variational phase-field fracture modeling with interfaces
    Yoshioka, Keita
    Mollaali, Mostafa
    Kolditz, Olaf
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 384
  • [38] Phase-Field Modeling of Fracture in Ferroelectric Materials
    Amir Abdollahi
    Irene Arias
    Archives of Computational Methods in Engineering, 2015, 22 : 153 - 181
  • [39] Multiscale Phase-Field Modeling of Fracture in Nanostructures
    Jahanshahi, Mohsen
    Khoei, Amir Reza
    Asadollahzadeh, Niloofar
    Aldakheel, Fadi
    JOURNAL OF MULTISCALE MODELLING, 2023, 14 (04)
  • [40] Phase-field fracture modeling for creep crack
    Xie, Qikun
    Qi, Hongyu
    Li, Shaolin
    Yang, Xiaoguang
    Shi, Duoqi
    Li, Fulin
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2023, 124