Regulating the P-band center of SnS 2-SnO 2 heterostructure to boost the redox kinetics for high-performance lithium-sulfur battery

被引:8
|
作者
Liu, Wendong [1 ]
Feng, Junan [1 ]
Zhang, Chaoyue [2 ]
Shi, Chuan [1 ]
Chen, Shuangqiang [4 ,5 ]
Wang, Tianyi [6 ]
Zhao, Xiaoxian [3 ]
Zhang, Lixue [2 ]
Song, Jianjun [1 ]
机构
[1] Qingdao Univ, Coll Phys, Qingdao 266071, Peoples R China
[2] Qingdao Univ, Coll Chem & Chem Engn, Qingdao 266071, Shandong, Peoples R China
[3] Hebei Agr Univ, Coll Sci, Dept Chem, Baoding 071001, Peoples R China
[4] Wenzhou Univ, Inst Carbon Neutralizat, Coll Chem & Mat Engn, Wenzhou 325035, Peoples R China
[5] Shanghai Univ, Sch Environm & Chem Engn, Dept Chem Engn, Shanghai 200444, Peoples R China
[6] Yangzhou Univ, Sch Chem & Chem Engn, Yangzhou 225002, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium -sulfur battery; Heterostructure; P band center; Redox kinetics; POLYSULFIDES;
D O I
10.1016/j.cej.2024.151526
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Lithium-sulfur batteries (LSBs) are considered a strong contender for the new-generation secondary energy storage system due to their high capacity and energy density. However, the sluggish reaction kinetics and the shuttle effect of lithium polysulfides (LPSs) severely hinder the cycle stability. The robust design of both the separator and cathode exhibit an effective role in restricting the shuttle effect and accelerating redox kinetics through the LPSs trapping and catalyzing effect. In this paper, a CNT-modified tin sulfide and tin oxide (SnS 2 - SnO 2 -CNTs) heterostructure was constructed as a multifunctional catalyst to modify both the separator and cathode to achieve high-performance LSBs. The formation of SnS 2 -SnO 2 heterostructure promotes the movement of the P band center of the tin atom to the Fermi level, which realizes the association process of adsorption, capture, and conversion of LPSs, thus effectively suppressing the shuttle effect. The SnS 2 -SnO 2 heterogeneous interface can also reduce the deposition barrier of Li 2 S, thus greatly promoting the redox kinetics. Together with the improved electron transfer, the resulting LSBs with the robust electrode and separator exhibit superior electrochemical performance with a high initial capacity of 930.2 mAh g - 1 at 1 C with a high sulfur loading of 4.3 mg cm -2 and a remarkable capacity of up to 580.3 mAh g - 1 at an ultrahigh rate of 7.4 C.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Encapsulating sulfur into mesoporous TiO2 host as a high performance cathode for lithium-sulfur battery
    Ding, Bing
    Shen, Laifa
    Xu, Guiyin
    Nie, Ping
    Zhang, Xiaogang
    ELECTROCHIMICA ACTA, 2013, 107 : 78 - 84
  • [32] Rutile TiO2 Mesocrystals as Sulfur Host for High-Performance Lithium-Sulfur Batteries
    Sun, Qingqing
    Chen, Kaixiang
    Liu, Yubin
    Li, Yafeng
    Wei, Mingdeng
    CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (64) : 16312 - 16318
  • [33] Regulating Electrocatalytic Polysulfides Redox Kinetics through Manipulating Surface Electronic Structure of Molybdenum-Based Catalysts for High-Performance Lithium-Sulfur Batteries
    Liu, Guo
    Zeng, Qi
    Sun, Xiao
    Tian, Shuhao
    Wang, Di
    Wu, Qingfeng
    Li, Xijuan
    Wei, Wei
    Wu, Tianyu
    Zhang, Yuhao
    Sheng, Yanbin
    Tao, Kun
    Xie, Erqing
    Zhang, Zhenxing
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (10) : 5588 - 5597
  • [34] Dual-atoms iron sites boost the kinetics of reversible conversion of polysulfide for high-performance lithium-sulfur batteries
    Zhang, Yu
    Qiu, Yue
    Fan, Lishuang
    Sun, Xun
    Jiang, Bo
    Wang, Maoxu
    Wu, Xian
    Tian, Da
    Song, Xueqing
    Yin, Xiaoju
    Shuai, Yong
    Zhang, Naiqing
    ENERGY STORAGE MATERIALS, 2023, 63
  • [35] Interlayer-expanded MoSe2 nanotubes as multifunctional separator coating for high-performance lithium-sulfur battery
    Yu, Hanzhi
    Zhang, Fujia
    Bao, Shuhong
    You, Yu
    MATERIALS LETTERS, 2023, 331
  • [36] Ultrathin SnS2 nanosheets as robust polysulfides immobilizers for high performance lithium-sulfur batteries
    Li, Meng
    Zhou, Jianbin
    Zhou, Jie
    Guo, Cong
    Han, Ying
    Zhu, Yongchun
    Wang, Gongming
    Qian, Yitai
    MATERIALS RESEARCH BULLETIN, 2017, 96 : 509 - 515
  • [37] Tailoring WB morphology enables d-band centers to be highly active for high-performance lithium-sulfur battery
    Zhao, Yuwei
    Liu, Chang
    Zha, Chenyang
    Li, Jing
    Lyu, Chongguang
    Wang, Kaixi
    Li, Junfeng
    San Hui, Kwan
    Zhang, Linghai
    Hui, Kwun Nam
    CHINESE CHEMICAL LETTERS, 2023, 34 (11)
  • [38] Tailoring WB morphology enables d-band centers to be highly active for high-performance lithium-sulfur battery
    Yuwei Zhao
    Chang Liu
    Chenyang Zha
    Jing Li
    Chongguang Lyu
    Kaixi Wang
    Junfeng Li
    Kwan San Hui
    Linghai Zhang
    Kwun Nam Hui
    ChineseChemicalLetters, 2023, 34 (11) : 321 - 325
  • [39] Cobalt/MXene-derived TiO2 heterostructure as a functional separator coating to trap polysulfide and accelerate redox kinetics for reliable lithium-sulfur battery
    Chang, Zhihua
    Liu, Wendong
    Feng, Junan
    Lin, Zenghui
    Shi, Chuan
    Wang, Tianyi
    Lei, Yaojie
    Zhao, Xiaoxian
    Song, Jianjun
    Wang, Guoxiu
    BATTERIES & SUPERCAPS, 2024, 7 (04)
  • [40] Tuning p-Band Centers and Interfacial Built-In Electric Field of Heterostructure Catalysts to Expedite Bidirectional Sulfur Redox for High-Performance Li-S Batteries
    Wang, Xinying
    Chen, Li
    Yu, Yaojiang
    Wang, Wei
    Yue, Liguo
    Shao, Zhuhang
    Wu, Hao
    Li, Yunyong
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (41)