TM-GAN: A Transformer-Based Multi-Modal Generative Adversarial Network for Guided Depth Image Super-Resolution

被引:1
|
作者
Zhu, Jiang [1 ]
Koh, Van Kwan Zhi [1 ]
Lin, Zhiping [1 ]
Wen, Bihan [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 39798, Singapore
关键词
Transformers; Superresolution; Generative adversarial networks; Convolutional neural networks; Task analysis; Spatial resolution; Image reconstruction; Depth images; guided image super-resolution; vision transformer; generative adversarial network; RGB-D; MAP SUPERRESOLUTION; FUSION; 3D;
D O I
10.1109/JETCAS.2024.3394495
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Despite significant strides in deep single image super-resolution (SISR), the development of robust guided depth image super-resolution (GDSR) techniques presents a notable challenge. Effective GDSR methods must not only exploit the properties of the target image but also integrate complementary information from the guidance image. The state-of-the-art in guided image super-resolution has been dominated by convolutional neural network (CNN) based methods, which leverage CNN as their architecture. However, CNN has limitations in capturing global information effectively, and their traditional regression training techniques can sometimes lead to challenges in the precise generating of high-frequency details, unlike transformers that have shown remarkable success in deep learning through the self-attention mechanism. Drawing inspiration from the transformative impact of transformers in both language and vision applications, we propose a Transformer-based Multi-modal Generative Adversarial Network dubbed TM-GAN. TM-GAN is designed to effectively process and integrate multi-modal data, leveraging the global contextual understanding and detailed feature extraction capabilities of transformers within a GAN architecture for GDSR, aiming to effectively integrate and utilize multi-modal data sources. Experimental evaluations of TM-GAN on a variety of RGB-D datasets demonstrate its superiority over the state-of-the-art methods, showcasing its effectiveness in leveraging transformer-based techniques for GDSR.
引用
收藏
页码:261 / 274
页数:14
相关论文
共 50 条
  • [31] Image Super-Resolution using a Improved Generative Adversarial Network
    Wang, Han
    Wu, Wei
    Su, Yang
    Duan, Yongsheng
    Wang, Pengze
    PROCEEDINGS OF 2019 IEEE 9TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC 2019), 2019, : 312 - 315
  • [32] A lightweight generative adversarial network for single image super-resolution
    Xinbiao Lu
    Xupeng Xie
    Chunlin Ye
    Hao Xing
    Zecheng Liu
    Changchun Cai
    The Visual Computer, 2024, 40 : 41 - 52
  • [33] Generative adversarial image super-resolution network for multiple degradations
    Lin, Hong
    Fan, Jing
    Zhang, Yangyi
    Peng, Dewei
    IET IMAGE PROCESSING, 2020, 14 (17) : 4520 - 4527
  • [34] Transformer-based image super-resolution and its lightweight
    Zhang, Dongxiao
    Qi, Tangyao
    Gao, Juhao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (26) : 68625 - 68649
  • [35] Super-Resolution Reconstruction of Underwater Image Based on Image Sequence Generative Adversarial Network
    Li, Li
    Fan, Zijia
    Zhao, Mingyang
    Wang, Xinlei
    Wang, Zhongyang
    Wang, Zhiqiong
    Guo, Longxiang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [36] Optimization of generative adversarial network based image super-resolution by using image mask
    Jiang, Qilei
    Ma, Yuanxi
    He Jishu/Nuclear Techniques, 2023, 46 (05): : 93 - 101
  • [37] A Transformer-Based Model for Super-Resolution of Anime Image
    Xu, Shizhuo
    Dutta, Vibekananda
    He, Xin
    Matsumaru, Takafumi
    SENSORS, 2022, 22 (21)
  • [38] Super-Resolution Generative Adversarial Network Based on the Dual Dimension Attention Mechanism for Biometric Image Super-Resolution
    Huang, Chi-En
    Li, Yung-Hui
    Aslam, Muhammad Saqlain
    Chang, Ching-Chun
    SENSORS, 2021, 21 (23)
  • [39] Image Reconstruction Algorithm Based on Improved Super-Resolution Generative Adversarial Network
    Zha Tibo
    Luo Lin
    Yang Kai
    Zhang Yu
    Li Jinlong
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (08)
  • [40] Single Image Super-Resolution: Depthwise Separable Convolution Super-Resolution Generative Adversarial Network
    Jiang, Zetao
    Huang, Yongsong
    Hu, Lirui
    APPLIED SCIENCES-BASEL, 2020, 10 (01):