Securing Microservices-Based IoT Networks: Real-Time Anomaly Detection Using Machine Learning

被引:0
|
作者
Olaya, Maria Katherine Plazas [1 ]
Tejada, Jaime Alberto Vergara [1 ]
Cobo, Jose Edinson Aedo [1 ]
机构
[1] Univ Antioquia, Fac Engn, Medellin 050010, Colombia
关键词
Compendex;
D O I
10.1155/2024/9281529
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Increased attention is being given to Internet of things (IoT) network security due to attempts to exploit vulnerabilities. Security techniques protecting availability, confidentiality, and information integrity have intensified as IoT devices are viewed as gateways to larger networks by malicious actors. As an additional factor, the microservices-based platforms have overtaken the deployment of applications that support smart cities; however, the distributed nature of these architectures heightens susceptibility to malicious network infrastructure use. These risks can result in disruptions to system functioning or data compromise. Proposed strategies to mitigate these risks include developing intrusion detection systems and utilizing machine learning to differentiate between normal and anomalous network traffic, indicating potential attacks. This article outlines the development and implementation of an intrusion detection system (IDS) using machine learning to detect online anomalies in network traffic. Comprising a traffic extractor and anomaly detector, the system employs supervised learning with various datasets to train models. The results demonstrate the effectiveness of the decision tree model in detecting traditional denial of service (DoS) attacks, achieving high scores across multiple metrics: an F1-score of 98.08%, precision of 99.25%, recall of 96.96%, and accuracy of 99.62%. The random forest model excels in identifying slow-rate DoS attacks, attaining an F1-score of 99.85%, precision of 99.91%, recall of 99.80%, and accuracy of 99.88%.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Decision Based Model for Real-Time IoT Analysis Using Big Data and Machine Learning
    Jamil, Hina
    Umer, Tariq
    Ceken, Celal
    Al-Turjman, Fadi
    WIRELESS PERSONAL COMMUNICATIONS, 2021, 121 (04) : 2947 - 2959
  • [22] Decision Based Model for Real-Time IoT Analysis Using Big Data and Machine Learning
    Hina Jamil
    Tariq Umer
    Celal Ceken
    Fadi Al-Turjman
    Wireless Personal Communications, 2021, 121 : 2947 - 2959
  • [23] Dynamic provisioning of devices in microservices-based IoT applications using context-aware reinforcement learning
    Rath, Chouhan Kumar
    Mandal, Amit Kr
    Sarkar, Anirban
    INNOVATIONS IN SYSTEMS AND SOFTWARE ENGINEERING, 2024,
  • [24] Machine Learning-Based Real-Time Anomaly Detection for Unmanned Aerial Vehicles with a Cloud Server
    Jeong, Hyeok-June
    Lee, Myung-Jae
    Lee, Chang Eun
    Kim, Sung-Noon
    Ha, Young-Guk
    JOURNAL OF INTERNET TECHNOLOGY, 2017, 18 (04): : 823 - 832
  • [25] Anomaly Detection in IoT Networks: From Architectures to Machine Learning Transparency
    Huc, Aleks
    Trcek, Denis
    IEEE ACCESS, 2021, 9 (09): : 60607 - 60616
  • [26] Real-Time Slip Detection and Control Using Machine Learning
    Pereira Tavares, Alexandre Henrique
    Oliveira, S. R. J.
    XXVII BRAZILIAN CONGRESS ON BIOMEDICAL ENGINEERING, CBEB 2020, 2022, : 1363 - 1369
  • [27] IoT Anomaly Detection Using a Multitude of Machine Learning Algorithms
    Balega, Maria
    Farag, Waleed
    Ezekiel, Soundararajan
    Wu, Xin-Wen
    Deak, Alicia
    Good, Zaryn
    2022 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP, AIPR, 2022,
  • [28] Real-Time Jamming Detection in Wireless IoT Networks
    Zahra, Fatima Tu
    Bostanci, Yavuz Selim
    Soyturk, Mujdat
    IEEE ACCESS, 2023, 11 : 70425 - 70442
  • [29] Detection of Real-Time Distributed Denial-of-Service (DDoS) Attacks on Internet of Things (IoT) Networks Using Machine Learning Algorithms
    Mahdi, Zaed
    Abdalhussien, Nada
    Mahmood, Naba
    Zaki, Rana
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 80 (02): : 2139 - 2159
  • [30] Automated real-time anomaly detection of temperature sensors through machine-learning
    Nayak, Debanjana
    Perros, Harry
    INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2020, 34 (03) : 137 - 152