FourLLIE: Boosting Low-Light Image Enhancement by Fourier Frequency Information

被引:46
|
作者
Wang, Chenxi [1 ]
Wu, Hongjun [1 ]
Jin, Zhi [1 ,2 ,3 ]
机构
[1] Sun Yat Sen Univ, Guangzhou, Peoples R China
[2] Guangdong Prov Key Lab Fire Sci & Technol, Guangzhou, Peoples R China
[3] Guangdong Prov Key Lab Robot Digital Intelligent, Guangzhou, Peoples R China
来源
PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023 | 2023年
基金
中国国家自然科学基金;
关键词
Low-light image enhancement; Fourier frequency information; Amplitude transform map; Signal-to-noise-ratio map; QUALITY ASSESSMENT; RETINEX; ALGORITHM; NETWORK;
D O I
10.1145/3581783.3611909
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, Fourier frequency information has attracted much attention in Low-Light Image Enhancement (LLIE). Some researchers noticed that, in the Fourier space, the lightness degradation mainly exists in the amplitude component and the rest exists in the phase component. By incorporating both the Fourier frequency and the spatial information, these researchers proposed remarkable solutions for LLIE. In this work, we further explore the positive correlation between the magnitude of amplitude and the magnitude of lightness, which can be effectively leveraged to improve the lightness of low-light images in the Fourier space. Moreover, we find that the Fourier transform can extract the global information of the image, and does not introduce massive neural network parameters like Multi-Layer Perceptrons (MLPs) or Transformer. To this end, a two-stage Fourier-based LLIE network (FourLLIE) is proposed. In the first stage, we improve the lightness of low-light images by estimating the amplitude transform map in the Fourier space. In the second stage, we introduce the Signal-to-Noise-Ratio (SNR) map to provide the prior for integrating the global Fourier frequency and the local spatial information, which recovers image details in the spatial space. With this ingenious design, FourLLIE outperforms the existing state-of-the-art (SOTA) LLIE methods on four representative datasets while maintaining good model efficiency. Notably, compared with a recent Transformer-based SOTA method SNR-Aware, FourLLIE reaches superior performance with only 0.31% parameters. Code is available at https://github.com/wangchx67/FourLLIE.
引用
收藏
页码:7459 / 7469
页数:11
相关论文
共 50 条
  • [21] Benchmarking Low-Light Image Enhancement and Beyond
    Liu, Jiaying
    Xu, Dejia
    Yang, Wenhan
    Fan, Minhao
    Huang, Haofeng
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (04) : 1153 - 1184
  • [22] Lightening Network for Low-Light Image Enhancement
    Wang, Li-Wen
    Liu, Zhi-Song
    Siu, Wan-Chi
    Lun, Daniel P. K.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 7984 - 7996
  • [23] Benchmarking Low-Light Image Enhancement and Beyond
    Jiaying Liu
    Dejia Xu
    Wenhan Yang
    Minhao Fan
    Haofeng Huang
    International Journal of Computer Vision, 2021, 129 : 1153 - 1184
  • [24] Low-light image enhancement with knowledge distillation
    Li, Ziwen
    Wang, Yuehuan
    Zhang, Jinpu
    NEUROCOMPUTING, 2023, 518 : 332 - 343
  • [25] Low-light Image Enhancement with Domain Adaptation
    Zhang, Yunjie
    Gao, Bin
    2022 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY, HUMAN-COMPUTER INTERACTION AND ARTIFICIAL INTELLIGENCE, VRHCIAI, 2022, : 55 - 60
  • [26] A survey on image enhancement for Low-light images
    Guo, Jiawei
    Ma, Jieming
    Garcia-Fernandez, Angel F.
    Zhang, Yungang
    Liang, Haining
    HELIYON, 2023, 9 (04)
  • [27] Low-Light Image Enhancement with Normalizing Flow
    Wang, Yufei
    Wan, Renjie
    Yang, Wenhan
    Li, Haoliang
    Chau, Lap-Pui
    Kot, Alex
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 2604 - 2612
  • [28] Contextual Information Aided Generative Adversarial Network for Low-Light Image Enhancement
    Hu, Shiyong
    Yan, Jia
    Deng, Dexiang
    ELECTRONICS, 2022, 11 (01)
  • [29] Low-Light Image Enhancement by Learning Contrastive Representations in Spatial and Frequency Domains
    Huang, Yi
    Tu, Xiaoguang
    Fu, Gui
    Liu, Tingting
    Liu, Bokai
    Yang, Ming
    Feng, Ziliang
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 1307 - 1312
  • [30] Low-light image enhancement algorithm using a residual network with semantic information
    Lian D.
    Guijin T.
    Journal of China Universities of Posts and Telecommunications, 2022, 29 (02): : 52 - 62