FourLLIE: Boosting Low-Light Image Enhancement by Fourier Frequency Information

被引:46
|
作者
Wang, Chenxi [1 ]
Wu, Hongjun [1 ]
Jin, Zhi [1 ,2 ,3 ]
机构
[1] Sun Yat Sen Univ, Guangzhou, Peoples R China
[2] Guangdong Prov Key Lab Fire Sci & Technol, Guangzhou, Peoples R China
[3] Guangdong Prov Key Lab Robot Digital Intelligent, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Low-light image enhancement; Fourier frequency information; Amplitude transform map; Signal-to-noise-ratio map; QUALITY ASSESSMENT; RETINEX; ALGORITHM; NETWORK;
D O I
10.1145/3581783.3611909
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, Fourier frequency information has attracted much attention in Low-Light Image Enhancement (LLIE). Some researchers noticed that, in the Fourier space, the lightness degradation mainly exists in the amplitude component and the rest exists in the phase component. By incorporating both the Fourier frequency and the spatial information, these researchers proposed remarkable solutions for LLIE. In this work, we further explore the positive correlation between the magnitude of amplitude and the magnitude of lightness, which can be effectively leveraged to improve the lightness of low-light images in the Fourier space. Moreover, we find that the Fourier transform can extract the global information of the image, and does not introduce massive neural network parameters like Multi-Layer Perceptrons (MLPs) or Transformer. To this end, a two-stage Fourier-based LLIE network (FourLLIE) is proposed. In the first stage, we improve the lightness of low-light images by estimating the amplitude transform map in the Fourier space. In the second stage, we introduce the Signal-to-Noise-Ratio (SNR) map to provide the prior for integrating the global Fourier frequency and the local spatial information, which recovers image details in the spatial space. With this ingenious design, FourLLIE outperforms the existing state-of-the-art (SOTA) LLIE methods on four representative datasets while maintaining good model efficiency. Notably, compared with a recent Transformer-based SOTA method SNR-Aware, FourLLIE reaches superior performance with only 0.31% parameters. Code is available at https://github.com/wangchx67/FourLLIE.
引用
收藏
页码:7459 / 7469
页数:11
相关论文
共 50 条
  • [1] SFDiff: Diffusion model with sufficient spatial-Fourier frequency information interaction for low-light image enhancement
    Wan, Fei
    Xu, Bingxin
    Yao, Jingli
    Zeng, Lu
    Pan, Weiguo
    Liu, Hongzhe
    IET IMAGE PROCESSING, 2024, 18 (13) : 4394 - 4410
  • [2] Unsupervised Low-Light Image Enhancement in the Fourier Transform Domain
    Ming, Feng
    Wei, Zhihui
    Zhang, Jun
    APPLIED SCIENCES-BASEL, 2024, 14 (01):
  • [3] Unsupervised Low-Light Image Enhancement via Virtual Diffraction Information in Frequency Domain
    Zhang, Xupei
    Qin, Hanlin
    Yu, Yue
    Yan, Xiang
    Yang, Shanglin
    Wang, Guanghao
    REMOTE SENSING, 2023, 15 (14)
  • [4] Frequency-aware network for low-light image enhancement
    Shang, Kai
    Shao, Mingwen
    Qiao, Yuanjian
    Liu, Huan
    COMPUTERS & GRAPHICS-UK, 2024, 118 : 210 - 219
  • [5] Low-light stereo image enhancement and de-noising in the low-frequency information enhanced image space
    Zhao, Minghua
    Qin, Xiangdong
    Du, Shuangli
    Bai, Xuefei
    Lyu, Jiahao
    Liu, Yiguang
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 265
  • [6] Low-Light Image Enhancement Using Image-to-Frequency Filter Learning
    Al Sobbahi, Rayan
    Tekli, Joe
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT II, 2022, 13232 : 693 - 705
  • [7] Low-Light Stereo Image Enhancement
    Huang, Jie
    Fu, Xueyang
    Xiao, Zeyu
    Zhao, Feng
    Xiong, Zhiwei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 2978 - 2992
  • [8] Low-Light Hyperspectral Image Enhancement
    Li, Xuelong
    Li, Guanlin
    Zhao, Bin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [9] Decoupled Low-Light Image Enhancement
    Hao, Shijie
    Han, Xu
    Guo, Yanrong
    Wang, Meng
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2022, 18 (04)
  • [10] Frequency-Based Unsupervised Low-Light Image Enhancement Framework
    Wang, Haodian
    MULTIMEDIA MODELING, MMM 2025, PT I, 2025, 15520 : 427 - 439