Physics-informed and data-driven discovery of governing equations for complex phenomena in heterogeneous media

被引:7
|
作者
Sahimi, Muhammad [1 ]
机构
[1] Univ Southern Calif, Mork Family Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
MORI-ZWANZIG FORMALISM; MARKOV STATE MODELS; UNIVERSAL APPROXIMATION; SPARSE IDENTIFICATION; GEOMETRIC DIFFUSIONS; VARIATIONAL APPROACH; STRUCTURE DEFINITION; MOLECULAR-DYNAMICS; DATA ASSIMILATION; HARMONIC-ANALYSIS;
D O I
10.1103/PhysRevE.109.041001
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Rapid evolution of sensor technology, advances in instrumentation, and progress in devising data-acquisition software and hardware are providing vast amounts of data for various complex phenomena that occur in heterogeneous media, ranging from those in atmospheric environment, to large-scale porous formations, and biological systems. The tremendous increase in the speed of scientific computing has also made it possible to emulate diverse multiscale and multiphysics phenomena that contain elements of stochasticity or heterogeneity, and to generate large volumes of numerical data for them. Thus, given a heterogeneous system with annealed or quenched disorder in which a complex phenomenon occurs, how should one analyze and model the system and phenomenon, explain the data, and make predictions for length and time scales much larger than those over which the data were collected? We divide such systems into three distinct classes. (i) Those for which the governing equations for the physical phenomena of interest, as well as data, are known, but solving the equations over large length scales and long times is very difficult. (ii) Those for which data are available, but the governing equations are only partially known, in the sense that they either contain various coefficients that must be evaluated based on the data, or that the number of degrees of freedom of the system is so large that deriving the complete equations is very difficult, if not impossible, as a result of which one must develop the governing equations with reduced dimensionality. (iii) In the third class are systems for which large amounts of data are available, but the governing equations for the phenomena of interest are not known. Several classes of physics-informed and data -driven approaches for analyzing and modeling of the three classes of systems have been emerging, which are based on machine learning, symbolic regression, the Koopman operator, the Mori-Zwanzig projection operator formulation, sparse identification of nonlinear dynamics, data assimilation combined with a neural network, and stochastic optimization and analysis. This perspective describes such methods and the latest developments in this highly important and rapidly expanding area and discusses possible future directions.
引用
收藏
页数:39
相关论文
共 50 条
  • [31] A physics-informed and hierarchically regularized data-driven model for predicting fluid flow through porous media
    Wang, Kun
    Chen, Yu
    Mehana, Mohamed
    Lubbers, Nicholas
    Bennett, Kane C.
    Kang, Qinjun
    Viswanathan, Hari S.
    Germann, Timothy C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 443
  • [32] Data-driven physics-informed constitutive metamodeling of complex fluids: A multifidelity neural network (MFNN) framework
    Mahmoudabadbozchelou, Mohammadamin
    Caggioni, Marco
    Shahsavari, Setareh
    Hartt, William H.
    Em Karniadakis, George
    Jamali, Safa
    JOURNAL OF RHEOLOGY, 2021, 65 (02) : 179 - 198
  • [33] Physics-informed data-driven discovery of constitutive models with application to strain-rate-sensitive soft materials
    Upadhyay, Kshitiz
    Fuhg, Jan N.
    Bouklas, Nikolaos
    Ramesh, K. T.
    COMPUTATIONAL MECHANICS, 2024,
  • [34] Data-driven physics-informed descriptors of cation ordering in multicomponent perovskite oxides
    Peng, Jiayu
    Damewood, James
    Gomez-Bombarelli, Rafael
    CELL REPORTS PHYSICAL SCIENCE, 2024, 5 (05):
  • [35] Weather forecasting based on data-driven and physics-informed reservoir computing models
    Yslam D. Mammedov
    Ezutah Udoncy Olugu
    Guleid A. Farah
    Environmental Science and Pollution Research, 2022, 29 : 24131 - 24144
  • [36] Physics-informed deep learning for data-driven solutions of computational fluid dynamics
    Solji Choi
    Ikhwan Jung
    Haeun Kim
    Jonggeol Na
    Jong Min Lee
    Korean Journal of Chemical Engineering, 2022, 39 : 515 - 528
  • [37] Physics-informed data-driven shale gas well production prediction method
    Ren, Wenxi
    Duan, Youjing
    Guo, Jianchun
    Tian, Zhuhong
    Zeng, Fanhui
    Luo, Yang
    Natural Gas Industry, 2024, 44 (09) : 127 - 139
  • [38] Physics-informed neural networks for data-driven simulation: Advantages, limitations, and opportunities
    de la Mata, Felix Fernandez
    Gijon, Alfonso
    Molina-Solana, Miguel
    Gomez-Romero, Juan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 610
  • [39] Data-Driven Optimal Power Flow: A Physics-Informed Machine Learning Approach
    Lei, Xingyu
    Yang, Zhifang
    Yu, Juan
    Zhao, Junbo
    Gao, Qian
    Yu, Hongxin
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (01) : 346 - 354
  • [40] Weather forecasting based on data-driven and physics-informed reservoir computing models
    Mammedov, Yslam D.
    Olugu, Ezutah Udoncy
    Farah, Guleid A.
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (16) : 24131 - 24144