Beyond monopole electrostatics in regulating conformations of intrinsically disordered proteins

被引:1
|
作者
Phillips, Michael [1 ]
Muthukumar, Murugappan [2 ]
Ghosh, Kingshuk [1 ,3 ]
机构
[1] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA
[2] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA
[3] Univ Denver, Mol & Cellular Biophys, Denver, CO 80208 USA
来源
PNAS NEXUS | 2024年 / 3卷 / 09期
基金
美国国家科学基金会;
关键词
heteropolymers; IDP; function; SEQUENCE DETERMINANTS; PHASE-SEPARATION; CHARGE; PHOSPHORYLATION; CONDENSATION; TRANSITION; POLYELECTROLYTES; SIMULATIONS; PREDICTION; DYNAMICS;
D O I
10.1093/pnasnexus/pgae367
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Conformations and dynamics of an intrinsically disordered protein (IDP) depend on its composition of charged and uncharged amino acids, and their specific placement in the protein sequence. In general, the charge (positive or negative) on an amino acid residue in the protein is not a fixed quantity. Each of the ionizable groups can exist in an equilibrated distribution of fully ionized state (monopole) and an ion-pair (dipole) state formed between the ionizing group and its counterion from the background electrolyte solution. The dipole formation (counterion condensation) depends on the protein conformation, which in turn depends on the distribution of charges and dipoles on the molecule. Consequently, effective charges of ionizable groups in the IDP backbone may differ from their chemical charges in isolation-a phenomenon termed charge-regulation. Accounting for the inevitable dipolar interactions, that have so far been ignored, and using a self-consistent procedure, we present a theory of charge-regulation as a function of sequence, temperature, and ionic strength. The theory quantitatively agrees with both charge reduction and salt-dependent conformation data of Prothymosin-alpha and makes several testable predictions. We predict charged groups are less ionized in sequences where opposite charges are well mixed compared to sequences where they are strongly segregated. Emergence of dipolar interactions from charge-regulation allows spontaneous coexistence of two phases having different conformations and charge states, sensitively depending on the charge patterning. These findings highlight sequence dependent charge-regulation and its potential exploitation by biological regulators such as phosphorylation and mutations in controlling protein conformation and function.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Dynamics and interactions of intrinsically disordered proteins
    Arai, Munehito
    Suetaka, Shunji
    Ooka, Koji
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2024, 84
  • [32] Design of functional intrinsically disordered proteins
    Garg, Ankush
    Gonzalez-Foutel, Nicolas S.
    Gielnik, Maciej B.
    Kjaergaard, Magnus
    PROTEIN ENGINEERING DESIGN & SELECTION, 2024, 37
  • [33] Making Sense of Intrinsically Disordered Proteins
    Dyson, H. Jane
    BIOPHYSICAL JOURNAL, 2016, 110 (05) : 1013 - 1016
  • [34] Structural biophysics of intrinsically disordered proteins
    Showalter, Scott
    Gibbs, Eric
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [35] Intrinsically disordered proteins related to epigenomics
    Nishimura, Yoshifumi
    GENES & GENETIC SYSTEMS, 2014, 89 (06) : 293 - 293
  • [36] Intrinsically disordered proteins: administration not executive
    Williamson, Mike P.
    Potts, Jennifer R.
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2012, 40 : 945 - 949
  • [37] Intrinsically disordered proteins and multicellular organisms
    Dunker, A. Keith
    Bondos, Sarah E.
    Huang, Fei
    Oldfield, Christopher J.
    SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2015, 37 : 44 - 55
  • [38] Classification of Intrinsically Disordered Regions and Proteins
    van der Lee, Robin
    Buljan, Marija
    Lang, Benjamin
    Weatheritt, Robert J.
    Daughdrill, Gary W.
    Dunker, A. Keith
    Fuxreiter, Monika
    Gough, Julian
    Gsponer, Joerg
    Jones, David T.
    Kim, Philip M.
    Kriwacki, Richard W.
    Oldfield, Christopher J.
    Pappu, Rohit V.
    Tompa, Peter
    Uversky, Vladimir N.
    Wright, Peter E.
    Babu, M. Madan
    CHEMICAL REVIEWS, 2014, 114 (13) : 6589 - 6631
  • [39] Fine structures of intrinsically disordered proteins
    Seth, Swarnadeep
    Stine, Brandon
    Bhattacharya, Aniket
    JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (01):
  • [40] Intrinsically disordered proteins from A to Z
    Uversky, Vladimir N.
    INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2011, 43 (08): : 1090 - 1103