Beyond monopole electrostatics in regulating conformations of intrinsically disordered proteins

被引:1
|
作者
Phillips, Michael [1 ]
Muthukumar, Murugappan [2 ]
Ghosh, Kingshuk [1 ,3 ]
机构
[1] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA
[2] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA
[3] Univ Denver, Mol & Cellular Biophys, Denver, CO 80208 USA
来源
PNAS NEXUS | 2024年 / 3卷 / 09期
基金
美国国家科学基金会;
关键词
heteropolymers; IDP; function; SEQUENCE DETERMINANTS; PHASE-SEPARATION; CHARGE; PHOSPHORYLATION; CONDENSATION; TRANSITION; POLYELECTROLYTES; SIMULATIONS; PREDICTION; DYNAMICS;
D O I
10.1093/pnasnexus/pgae367
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Conformations and dynamics of an intrinsically disordered protein (IDP) depend on its composition of charged and uncharged amino acids, and their specific placement in the protein sequence. In general, the charge (positive or negative) on an amino acid residue in the protein is not a fixed quantity. Each of the ionizable groups can exist in an equilibrated distribution of fully ionized state (monopole) and an ion-pair (dipole) state formed between the ionizing group and its counterion from the background electrolyte solution. The dipole formation (counterion condensation) depends on the protein conformation, which in turn depends on the distribution of charges and dipoles on the molecule. Consequently, effective charges of ionizable groups in the IDP backbone may differ from their chemical charges in isolation-a phenomenon termed charge-regulation. Accounting for the inevitable dipolar interactions, that have so far been ignored, and using a self-consistent procedure, we present a theory of charge-regulation as a function of sequence, temperature, and ionic strength. The theory quantitatively agrees with both charge reduction and salt-dependent conformation data of Prothymosin-alpha and makes several testable predictions. We predict charged groups are less ionized in sequences where opposite charges are well mixed compared to sequences where they are strongly segregated. Emergence of dipolar interactions from charge-regulation allows spontaneous coexistence of two phases having different conformations and charge states, sensitively depending on the charge patterning. These findings highlight sequence dependent charge-regulation and its potential exploitation by biological regulators such as phosphorylation and mutations in controlling protein conformation and function.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Electrostatics and hydrophobicity in the dynamics of intrinsically disordered proteins
    Vancraenenbroeck, Renee
    Hofmann, Hagen
    EUROPEAN PHYSICAL JOURNAL E, 2023, 46 (12):
  • [2] Electrostatics and hydrophobicity in the dynamics of intrinsically disordered proteins
    Renee Vancraenenbroeck
    Hagen Hofmann
    The European Physical Journal E, 2023, 46
  • [3] How multisite phosphorylation impacts the conformations of intrinsically disordered proteins
    Jin, Fan
    Grater, Frauke
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (05)
  • [4] Structural Proteomics Methods to Interrogate the Conformations and Dynamics of Intrinsically Disordered Proteins
    Beveridge, Rebecca
    Calabrese, Antonio N.
    FRONTIERS IN CHEMISTRY, 2021, 9
  • [5] A structural entropy index to analyse local conformations in intrinsically disordered proteins
    Akhila, Melarkode Vattekatte
    Narwani, Tarun Jairaj
    Floch, Aline
    Maljkovic, Mirjana
    Bisoo, Soubika
    Shinada, Nicolas K.
    Kranjc, Agata
    Gelly, Jean-Christophe
    Srinivasan, Narayanaswamy
    Mitic, Nenad
    de Brevern, Alexandre G.
    JOURNAL OF STRUCTURAL BIOLOGY, 2020, 210 (01)
  • [6] Intrinsically disordered proteins and proteins with intrinsically disordered regions in neurodegenerative diseases
    Coskuner-Weber, Orkid
    Mirzanli, Ozan
    Uversky, Vladimir N.
    BIOPHYSICAL REVIEWS, 2022, 14 (03) : 679 - 707
  • [7] Intrinsically disordered proteins and proteins with intrinsically disordered regions in neurodegenerative diseases
    Orkid Coskuner-Weber
    Ozan Mirzanli
    Vladimir N. Uversky
    Biophysical Reviews, 2022, 14 : 679 - 707
  • [8] Intrinsically Disordered Proteins and Intrinsically Disordered Protein Regions
    Oldfield, Christopher J.
    Dunker, A. Keith
    ANNUAL REVIEW OF BIOCHEMISTRY, VOL 83, 2014, 83 : 553 - 584
  • [9] Intrinsically disordered proteins
    Dunker, A. K.
    Uversky, V. N.
    Oldfield, C. J.
    Mohan, A.
    Cheng, Y.
    Zaidi, S.
    Romero, P. R.
    Xie, H.
    Obradovic, Z.
    BIOPHYSICAL JOURNAL, 2007, : 1A - 1A
  • [10] Intrinsically disordered proteins
    Babu, M. Madan
    MOLECULAR BIOSYSTEMS, 2012, 8 (01) : 21 - 21