Mixed Hamiltonian Monte Carlo for Mixed Discrete and Continuous Variables

被引:0
|
作者
Zhou, Guangyao [1 ]
机构
[1] Vicarious AI, Union City, CA 94587 USA
基金
美国国家科学基金会;
关键词
BINARY; MODELS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hamiltonian Monte Carlo (HMC) has emerged as a powerful Markov Chain Monte Carlo (MCMC) method to sample from complex continuous distributions. However, a fundamental limitation of HMC is that it can not be applied to distributions with mixed discrete and continuous variables. In this paper, we propose mixed HMC (M-HMC) as a general framework to address this limitation. M-HMC is a novel family of MCMC algorithms that evolves the discrete and continuous variables in tandem, allowing more frequent updates of discrete variables while maintaining HMC's ability to suppress random-walk behavior. We establish M-HMC's theoretical properties, and present an efficient implementation with Laplace momentum that introduces minimal overhead compared to existing HMC methods. The superior performances of M-HMC over existing methods are demonstrated with numerical experiments on Gaussian mixture models (GMMs), variable selection in Bayesian logistic regression (BLR), and correlated topic models (CTMs).
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Classification with discrete and continuous variables via general mixed-data models
    de Leon, A. R.
    Soo, A.
    Williamson, T.
    JOURNAL OF APPLIED STATISTICS, 2011, 38 (05) : 1021 - 1032
  • [22] Mixed vertex - Monte Carlo model of recrystallization
    Piekos, K.
    Tarasiuk, J.
    Wierzbanowski, K.
    Bacrox, B.
    RECRYSTALLIZATION AND GRAIN GROWTH III, PTS 1 AND 2, 2007, 558-559 : 1151 - +
  • [23] Unified Monte Carlo and Mixed Probability Functions
    Capote, R.
    Smith, D. L.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2011, 59 (02) : 1284 - 1287
  • [24] MONTE-CARLO SIMULATIONS OF MIXED MONOLAYERS
    SIEPMANN, JI
    MCDONALD, IR
    MOLECULAR PHYSICS, 1992, 75 (02) : 255 - 259
  • [25] Monte Carlo Hamiltonian
    Jirari, H
    Kröger, H
    Luo, XQ
    Moriarty, KJM
    PHYSICS LETTERS A, 1999, 258 (01) : 6 - 14
  • [26] Monte Carlo Hamiltonian
    Jirari, H
    Kröger, H
    Huang, CQ
    Jiang, JQ
    Luo, XQ
    Moriarty, KJM
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 83-4 : 953 - 955
  • [27] Monte Carlo Hamiltonian
    Jirari, H.
    Kröger, H.
    Luo, X.Q.
    Moriarty, K.J.M.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 258 (01): : 6 - 14
  • [28] Planning for mixed discrete continuous domains
    Fox, Maria
    INTEGRATION OF AI AND OR TECHNIQUES IN CONSTRAINT PROGRAMMING FOR COMBINATORIAL OPTIMIZATION PROBLEMS, 2006, 3990 : 2 - 2
  • [29] A MIXED MONTE CARLO AND QUASI-MONTE CARLO METHOD WITH APPLICATIONS TO MATHEMATICAL FINANCE
    Rosca, Alin, V
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2008, 53 (04): : 57 - 76
  • [30] Structural synthesis considering mixed discrete-continuous design variables: A Bayesian framework
    Jensen, H. A.
    Jerez, D. J.
    Beer, M.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 162