THE LEVEL-SET SUBDIFFERENTIAL ERROR BOUND VIA MOREAU ENVELOPES

被引:1
|
作者
Wang, Yu [1 ]
Li, Shengjie [1 ]
Li, Minghua [2 ]
Li, Xiaobing [3 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Chongqing, Peoples R China
[2] Chongqing Univ Arts & Sci, Key Lab Complex Data Anal & Artificial Intelligen, Chongqing, Peoples R China
[3] Chongqing Jiaotong Univ, Coll Math & Stat, Chongqing, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
The Kurdyka-ojasiewicz property; Level-set subdifferential error bound; Local Hodlder error bound; Moreau envelope; DESCENT METHODS; CONVERGENCE;
D O I
10.23952/jnva.8.2024.3.05
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The level -set subdifferential error bound (LSEB) is weaker than the Kurdyka-ojasiewicz (KL) property and can replace it to establish linear convergence for various first -order algorithms. In this paper, we mainly study the behaviour of the level -set subdifferential error bound via Moreau envelopes under suitable assumptions. We provide an example that the Moreau envelope does not have the KL property but has the LSEB when the original function does not satisfy the KL property but only the LSEB.
引用
收藏
页码:419 / 431
页数:13
相关论文
共 50 条
  • [41] ON THE ERSATZ MATERIAL APPROXIMATION IN LEVEL-SET METHODS
    Dambrine, Marc
    Kateb, Djalil
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2010, 16 (03) : 618 - 634
  • [42] A NEW LEVEL-SET APPROACH FOR PREMIXED FLAME
    Oshima, Nobuyuki
    ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, PROCEEDINGS, VOL 2, PTS A AND B, 2010, : 295 - 300
  • [43] PIPELINE SEGMENTATION USING LEVEL-SET METHOD
    Leangaramkul, A.
    Kasetkasem, T.
    Tipsuwan, Y.
    Isshiki, T.
    Chanwimaluang, T.
    Hoonsuwan, P.
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3880 - 3883
  • [44] The level-set method for modeling epitaxial growth
    Ratsch, C.
    Petersen, M.
    Caflisch, R. E.
    ICCN 2002: INTERNATIONAL CONFERENCE ON COMPUTATIONAL NANOSCIENCE AND NANOTECHNOLOGY, 2002, : 344 - 347
  • [45] Gaussian level-set percolation on complex networks
    Kuhn, Reimer
    PHYSICAL REVIEW E, 2024, 110 (05)
  • [46] GPU-accelerated level-set segmentation
    Lamas-Rodriguez, Julian
    Heras, Dora B.
    Arguello, Francisco
    Kainmueller, Dagmar
    Zachow, Stefan
    Boo, Montserrat
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2016, 12 (01) : 15 - 29
  • [47] Deep level-set method for Stefan problems
    Shkolnikov, Mykhaylo
    Soner, H. Mete
    Tissot-Daguette, Valentin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 503
  • [48] A level-set method for the evolution of faceted crystals
    Russo, G
    Smereka, P
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (06): : 2073 - 2095
  • [49] Level-set methods for the simulation of epitaxial phenomena
    Gyure, MF
    Ratsch, C
    Merriman, B
    Caflisch, RE
    Osher, S
    Zinck, JJ
    Vvedensky, DD
    PHYSICAL REVIEW E, 1998, 58 (06): : R6927 - R6930
  • [50] GPU-accelerated level-set segmentation
    Julián Lamas-Rodríguez
    Dora B. Heras
    Francisco Argüello
    Dagmar Kainmueller
    Stefan Zachow
    Montserrat Bóo
    Journal of Real-Time Image Processing, 2016, 12 : 15 - 29