Ultrahigh-Precision Hamiltonian Parameter Estimation in a Superconducting Circuit

被引:1
|
作者
Li, Sai [1 ,2 ,3 ,4 ]
Pan, De-Jian [2 ]
Zhu, Yuan-Ke [2 ]
Zhou, Jia-Lang [2 ]
Liao, Wen-Cui [2 ]
Zhang, Wei-Xin [2 ]
Liang, Zhen-Tao [1 ,2 ,3 ,4 ]
Lv, Qing-Xian [1 ,2 ,3 ,4 ]
Yu, Haifeng [3 ,5 ,6 ]
Xue, Zheng-Yuan [1 ,2 ,3 ,4 ,6 ]
Yan, Hui [1 ,2 ,3 ,4 ,5 ,6 ]
Zhu, Shi-Liang [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] South China Normal Univ, Guangdong Basic Res Ctr Excellence Struct & Fundam, Minist Educ, Key Lab Atom & Subatom Struct & Quantum Control, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, Sch Phys, Guangzhou 510006, Peoples R China
[3] South China Normal Univ, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangdong Hong Kong Joint Lab Quantum Matter, Guangzhou 510006, Peoples R China
[4] South China Normal Univ, Frontier Res Inst Phys, Guangzhou 510006, Peoples R China
[5] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
[6] Hefei Natl Lab, Hefei 230088, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
SCHRODINGER CAT STATES; STATISTICAL DISTANCE; QUANTUM SUPREMACY; ENTANGLEMENT; SPECTROSCOPY; GENERATION; LIMIT;
D O I
10.1103/PhysRevLett.132.250204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Hamiltonian, which determines the evolution of a quantum system, is fundamental in quantum physics. Therefore, it is crucial to implement high-precision generation and measurement of the Hamiltonian in a practical quantum system. Here, we experimentally demonstrate ultrahigh-precision Hamiltonian parameter estimation with a significant quantum advantage in a superconducting circuit via sequential control. We first observe the commutation relation for noncommuting operations determined by the system Hamiltonian, both with and without adding quantum control, verifying the commuting property of controlled noncommuting operations. Based on this control-induced commuting property, we further demonstrate Hamiltonian parameter estimation for polar and azimuth angles in superconducting circuits, achieving ultrahigh metrological gains in measurement precision exceeding the standard quantum limit by up to 16.0 and 16.1 dB at N 1/4 100, respectively.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] A HIGH-PRECISION PARAMETER ESTIMATION PROGRAM
    HILT, DE
    ASTRONOMICAL JOURNAL, 1968, 73 (10P2): : S183 - &
  • [32] Effects of the reservoir squeezing on the precision of parameter estimation
    Wu, Shao-xiong
    Yu, Chang-shui
    Song, He-shan
    PHYSICS LETTERS A, 2015, 379 (18-19) : 1228 - 1232
  • [33] Enhancing the Precision of Parameter Estimation in Band Gap
    Huang, J.
    Zhan, Q.
    Liu, Z. K.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2016, 55 (09) : 3973 - 3980
  • [34] A High Precision GTD Parameter Estimation Method
    Zou, Yongqiang
    Gao, Xunzhang
    Li, Xiang
    Liu, Yongxiang
    2015 8th International Congress on Image and Signal Processing (CISP), 2015, : 1220 - 1224
  • [35] Control enhanced estimation of the driving strength in a superconducting circuit
    Miao, Zibo
    Chen, Yu
    Yuan, Haidong
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 5351 - 5356
  • [36] Optimizing qubit Hamiltonian parameter estimation algorithm using PSO
    Sergeevich, Alexandr
    Bartlett, Stephen D.
    2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [37] Magnetic Hamiltonian parameter estimation using deep learning techniques
    Kwon, H. Y.
    Yoon, H. G.
    Lee, C.
    Chen, G.
    Liu, K.
    Schmid, A. K.
    Wu, Y. Z.
    Choi, J. W.
    Won, C.
    SCIENCE ADVANCES, 2020, 6 (39):
  • [38] Efficient cosmological parameter estimation with Hamiltonian Monte Carlo technique
    Hajian, Amir
    PHYSICAL REVIEW D, 2007, 75 (08)
  • [39] Ultrahigh-Precision Measurement of the n=2 Triplet P Fine Structure of Atomic Helium Using Frequency-Offset Separated Oscillatory Fields
    Kato, K.
    Skinner, T. D. G.
    Hessels, E. A.
    PHYSICAL REVIEW LETTERS, 2018, 121 (14)
  • [40] Effect of Measurement Backaction on Quantum Clock Precision Studied with a Superconducting Circuit
    He X.
    Pakkiam P.
    Gangat A.A.
    Kewming M.J.
    Milburn G.J.
    Fedorov A.
    Physical Review Applied, 2023, 20 (03)