Two-Dimensional Chiral Covalent Organic Frameworks with Significant Rashba-Dresselhaus Spin Splitting

被引:0
|
作者
Liu, Shanshan [1 ]
Li, Xingxing [1 ,2 ,3 ]
Li, Qunxiang [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Key Lab Precis & Intelligent Chem, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Anhui, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2024年 / 15卷 / 34期
基金
中国国家自然科学基金;
关键词
INVERSION; DESIGN;
D O I
10.1021/acs.jpclett.4c01276
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two-dimensional (2D) nonmagnetic semiconductors with large Rashba-Dresselhaus (R-D) spin splitting hold promise for applications in electric-field-controlled spintronics. Current research primarily focuses on metal-based R-D materials. A natural question is whether significant R-D spin splitting can be realized in metal-free organic systems. In this work, through first-principles calculations, we demonstrate that 2D chiral covalent organic frameworks (CCOFs) can serve as a potential platform for designing R-D semiconductors. By constructing 2D CCOFs with benzene cores and iodine-based chiral linkers, significant spin splitting at the valence band is achieved. Particularly, with 2,2 '-diiodobiphenyl linkers, the R-D energy of spin splitting is 12 meV, accompanied by a coupling constant (alpha) of 0.12 eV & Aring;. Meanwhile, the spin texture of the valence band is adjustable via tuning the chirality. Furthermore, through group substitutions, the R-D energy can be notably increased up to 32 meV and the coupling constant up to 0.4 eV & Aring;, comparable to metal-based R-D materials.
引用
收藏
页码:8790 / 8796
页数:7
相关论文
共 50 条
  • [41] Interlayer Shifting in Two-Dimensional Covalent Organic Frameworks
    Kang, Chengjun
    Zhang, Zhaoqiang
    Wee, Vanessa
    Usadi, Adam K.
    Calabro, David C.
    Baugh, Lisa Saunders
    Wang, Shun
    Wang, Yuxiang
    Zhao, Dan
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (30) : 12995 - 13002
  • [42] Functional π-Conjugated Two-Dimensional Covalent Organic Frameworks
    Babu, H. Vignesh
    Bai, M. G. Monika
    Rao, M. Rajeswara
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (12) : 11029 - 11060
  • [43] Bipolar semiconductor in two-dimensional covalent organic frameworks
    Guo, Xu
    Mu, Haimen
    Hu, Tianyi
    Li, Qunxiang
    Wang, Z. F.
    PHYSICAL REVIEW B, 2022, 105 (15)
  • [44] Two-dimensional Covalent Organic Frameworks for Electrochromic Switching
    Sarkar, Madhurima
    Dutta, Tapas Kumar
    Patra, Abhijit
    CHEMISTRY-AN ASIAN JOURNAL, 2021, 16 (20) : 3055 - 3067
  • [45] Flux synthesis of two-dimensional covalent organic frameworks
    Wang, Zhifang
    Zhang, Yushu
    Liu, Jinjin
    Chen, Yao
    Cheng, Peng
    Zhang, Zhenjie
    NATURE PROTOCOLS, 2024, 19 (12) : 3489 - 3519
  • [46] Anomalous giant Rashba spin splitting in two-dimensional hole systems
    Winkler, R
    Noh, H
    Tutuc, E
    Shayegan, M
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 12 (1-4): : 428 - 431
  • [47] Anisotropic magnetoresistance in a two-dimensional electron system with Rashba and Dresselhaus spin-orbit coupling
    Wang, C. M.
    PHYSICAL REVIEW B, 2010, 82 (16)
  • [48] Spin Hall effect in two-dimensional InSe: Interplay between Rashba and Dresselhaus spin-orbit couplings
    Farooq, M. Umar
    Xian, Lede
    Huang, Li
    PHYSICAL REVIEW B, 2022, 105 (24)
  • [49] Nanoscrolls Formed from Two-Dimensional Covalent Organic Frameworks
    Li, Haoyuan
    Bredas, Jean-Luc
    CHEMISTRY OF MATERIALS, 2019, 31 (09) : 3265 - 3273
  • [50] Direct and indirect excitons in two-dimensional covalent organic frameworks†
    Sun, Shan
    Ma, Hui-zhong
    Zhang, Xiao
    Ma, Yu-chen
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2020, 33 (05) : 569 - 577