Scalability in Visualization and Visual Analytics with Progressive Data Analysis

被引:0
|
作者
Fekete, Jean-Daniel [1 ,2 ]
机构
[1] INRIA, Orsay, France
[2] Univ Paris Saclay, Orsay, France
关键词
Visualization; Visual Analytics; Scalability; Progressive Visualization; Progressive Visual Analytics; Progressive Data Analysis;
D O I
10.1145/3656650.3660546
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Scalability is an issue in visualization and visual analytics. The dataset sizes we can handle are lagging behind by several levels of magnitude compared to domains such as database, artificial intelligence, and simulation. The standard method for addressing scalability consists of adding more resources: more processors, more GPUs, more memory, and faster networks. Unfortunately, this method will not solve the visualization scalability problem alone. It does not solve the crucial issues of maintaining latency under critical limits to allowexploration and taming human attention during long-lasting computations. Progressive Data Analysis (PDA) emerged about a decade ago to address this scalability problem, showing promising but challenging solutions. I will show a few examples of applications. However, PDA is still lagging behind, mainly because of domain boundaries coming from academic research.
引用
收藏
页数:1
相关论文
共 50 条
  • [31] Frontier of Information Visualization and Visual Analytics in 2016
    Lu, Min
    Chen, Siming
    Lai, Chufan
    Lin, Lijing
    Yuan, Xiaoru
    JOURNAL OF VISUALIZATION, 2017, 20 (04) : 667 - 686
  • [32] Editorial healthcare information visualization and visual analytics
    Ng, Peter A.
    Don Wei, Ching-Song
    Journal of Integrated Design and Process Science, 2011, 15 (04):
  • [33] Visual analytics and visualization for android security risk
    Yoo, Sangbong
    Ryu, Hong Ryeol
    Yeon, Hanbyul
    Kwon, Taekyoung
    Jang, Yun
    JOURNAL OF COMPUTER LANGUAGES, 2019, 53 : 9 - 21
  • [34] SEURAT: Visual analytics for the integrated analysis of microarray data
    Alexander Gribov
    Martin Sill
    Sonja Lück
    Frank Rücker
    Konstanze Döhner
    Lars Bullinger
    Axel Benner
    Antony Unwin
    BMC Medical Genomics, 3
  • [35] Advanced visualization and visual analytics: general discussion
    Dr Procter
    Dr Ertl
    Dr Petrov
    Dr O'Donoghue
    Professor Brooks
    Professor Hirst
    Stone
    Krone
    Dr Zoppe
    Hall
    Dr Baaden
    Dr Reiher
    Dr Sommer
    Dr Fowler
    Dr Rozmanov
    Dr Glowacki
    FARADAY DISCUSSIONS, 2014, 169 : 245 - 264
  • [36] A Visual Analytics Framework for Distributed Data Analysis Systems
    Nayeem, Abdullah-Al-Raihan
    Elshambakey, Mohammed
    Dobbs, Todd
    Lee, Huikyo
    Crichton, Daniel
    Zhu, Yimin
    Chokwitthaya, Chanachok
    Tolone, William J.
    Cho, Isaac
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 229 - 240
  • [37] Visualization and Visual Analysis of Ensemble Data: A Survey
    Wang, Junpeng
    Hazarika, Subhashis
    Li, Cheng
    Shen, Han-Wei
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2019, 25 (09) : 2853 - 2872
  • [38] Visualization Viewpoints Sampling for Scalable Visual Analytics
    Kwon, Bum Chul
    Verma, Janu
    Haas, Peter J.
    Demiralp, Cagatay
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2017, 37 (01) : 100 - 108
  • [39] Steering-by-example for Progressive Visual Analytics
    Hografer, Marius
    Angelini, Marco
    Santucci, Giuseppe
    Schulz, Hans-Jorg
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2022, 13 (06)
  • [40] Big Data Analysis and Services: Visualization of Smart Data to Support Healthcare Analytics
    Leung, Carson K.
    Zhang, Yibin
    Hoi, Calvin S. H.
    Souza, Joglas
    Wodi, Bryan H.
    2019 INTERNATIONAL CONFERENCE ON INTERNET OF THINGS (ITHINGS) AND IEEE GREEN COMPUTING AND COMMUNICATIONS (GREENCOM) AND IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING (CPSCOM) AND IEEE SMART DATA (SMARTDATA), 2019, : 1261 - 1268