On a conjecture concerning the exponential Diophantine equation (an2+1)x + (bn2-1)y = (cn)z

被引:0
|
作者
Fei, Shuanglin [1 ]
Zhu, Guangyan [2 ]
Wu, Rongjun [3 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Hubei Minzu Univ, Sch Math & Stat, Enshi 445000, Peoples R China
[3] Southwest Minzu Univ, Sch Math, Chengdu 610064, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2024年 / 32卷 / 06期
关键词
linear forms in m -adic logarithms; exponential Diophantine equation; positive; integer solution; PERFECT POWERS;
D O I
10.3934/era.2024184
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let a, b, c, and n be positive integers such that a + b = c(2), 2 <does not divide> c and n > 1. In this paper, we prove that if gcd(c, n) = 1 and n >= 117.14c, then the equation (an(2) + 1)(x) + (bn(2) - 1)(y) = (cn)(z) has only the positive integer solution (x, y, z) = (1, 1, 2) under the assumption gcd(an(2) + 1, bn(2) - 1) = 1. Thus, we affirm that the conjecture proposed by Fujita and Le is true in this case. Moreover, combining the above result with some existing results and a computer search, we show that, for any positive integer n, if (a, b, c) = (12, 13, 5), (18, 7, 5), or (44, 5, 7), then this equation has only the solution (x, y, z) = (1, 1, 2). This result extends the theorem of Terai and Hibino gotten in 2015, that of Alan obtained in 2018, and Hasanalizade's theorem attained recently.
引用
收藏
页码:4096 / 4107
页数:12
相关论文
共 50 条
  • [31] Some results concerning the exponential Diophantine equation (an-1)(bm-1) = x2
    Ameur, Zahra
    Boumahdi, Rachid
    Garici, Tarek
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (02): : 613 - 622
  • [32] A new conjecture concerning the Diophantine equation x2+by = cz
    Cao, ZF
    Dong, XL
    Li, Z
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2002, 78 (10) : 199 - 202
  • [33] ON THE EXPONENTIAL DIOPHANTINE EQUATION (n-1)x + (n+2)y = nz
    Bai, Hairong
    Kizildere, Elif
    Soydan, Gokhan
    Yuan, Pingzhi
    COLLOQUIUM MATHEMATICUM, 2020, 161 (02) : 239 - 249
  • [34] THE EXPONENTIAL DIOPHANTINE EQUATION nx + (n+1)y = (n+2)z REVISITED
    He, Bo
    Togbe, Alain
    GLASGOW MATHEMATICAL JOURNAL, 2009, 51 : 659 - 667
  • [35] On the Exponential Diophantine equation 5x - 3y = z2
    Thongnak, Sutthiwat
    Kaewong, Theeradach
    Chuayjan, Wariam
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (01): : 99 - 102
  • [36] On the Exponential Diophantine equation 11x- 17y =z2
    Thongnak, Sutthiwat
    Kaewong, Theeradach
    Chuayjan, Wariam
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (01): : 181 - 184
  • [37] THE DIOPHANTINE EQUATION (2am-1)x + (2m)y = (2am+1)z
    Miyazaki, T.
    Togbe, A.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (08) : 2035 - 2044
  • [38] On the exponential Diophantine equation (3 pm2-1)x + (p(p-3)m2+1)y = (pm)z
    Terai, Nobuhiro
    Hibino, Takeshi
    PERIODICA MATHEMATICA HUNGARICA, 2017, 74 (02) : 227 - 234
  • [39] A NOTE ON THE EXPONENTIAL DIOPHANTINE EQUATION (4m2+1)x + (5m2-1)y = (3m)z
    Wang, Jianping
    Wang, Tingting
    Zhang, Wenpeng
    COLLOQUIUM MATHEMATICUM, 2015, 139 (01) : 121 - 126
  • [40] On the Diophantine equation (2x − 1)(py − 1) = 2z2
    Ruizhou Tong
    Czechoslovak Mathematical Journal, 2021, 71 : 689 - 696