In order to study the catalytic activity of beta cyclodextrin-encapsulated zinc oxide (ZnO) nanoparticles in microbial oil synthesis, rice-washed waste water (RWW) was used as the fermentation medium and streptomyces fradiae as the microbe. The introduction of zinc oxide nanoparticles during fermentation had an impact on output and growth. The biomass percentage was 1.5 times greater and the fatty acid profile was better than in the control samples. The analysis of the induction period (IP) revealed that samples containing zinc oxide nanoparticles had maximum oxidation stability for up to 120 days of storage, along with a considerable reduction in autoxidation. The cetane number and calorific value, however, increased with the addition of ZnO nanoparticles. A new study discovered that the use of ZnO nanoparticles encapsulated in beta-CD led to much increased production (63.5 g/L) of microbial oil than the control sample (42.5 g/L). Therefore, it is anticipated that these nanoparticles would find utility in energy-related applications. Emulsion-based beta cyclodextrin-encapsulated ZnO nanoparticles were produced. For the first time, beta-cyclodextrin-encapsulated ZnO nanoparticles were used as a heterogeneous catalyst during fermentation. The effects of growth, biomass yield, and storage stability were explored in this paper. The nanoparticles significantly enhanced the fatty acid profile. image