A Novel Continuous Sleep State Artificial Neural Network Model Based on Multi-Feature Fusion of Polysomnographic Data

被引:0
|
作者
Cui, Jian [1 ]
Sun, Yunliang [2 ]
Jing, Haifeng [3 ]
Chen, Qiang [1 ]
Huang, Zhihao [1 ]
Qi, Xin [1 ]
Cui, Hao [1 ]
机构
[1] Shandong Inst Petr & Chem Technol, Dept Big Data & Fundamental Sci, 271 Bei Er Lu, Dongying 257061, Shandong, Peoples R China
[2] Bin Zhou Med Univ Hosp, Dept Resp & Sleep Med, Binzhou 256600, Shandong, Peoples R China
[3] Peking Univ, Coll Software & Microelect, Beijing 100000, Peoples R China
来源
关键词
sleep depth value; sleep continuity; EEG features; timing fitness; ANN model; EEG; CHANNEL; NREM;
D O I
10.2147/NSS.S463897
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Purpose: Sleep structure is crucial in sleep research, characterized by its dynamic nature and temporal progression. Traditional 30second epochs falter in capturing the intricate subtleties of various micro-sleep states. This paper introduces an innovative artificial neural network model to generate continuous sleep depth value (SDV), utilizing a novel multi-feature fusion approach with EEG data, seamlessly integrating temporal consistency. Methods: The study involved 50 normal and 100 obstructive sleep apnea-hypopnea syndrome (OSAHS) participants. After segmenting the sleep data into 3-second intervals, a diverse array of 38 feature values were meticulously extracted, including power, spectrum entropy, frequency band duration and so on. The ensemble random forest model calculated the timing fitness value for all the features, from which the top 7 time-correlated features were selected to create detailed sleep sample values ranging from 0 to 1. Subsequently, an artificial neural network (ANN) model was trained to delineate sleep continuity details, unravel concealed patterns, and far surpassed the traditional 5-stage categorization (W, N1, N2, N3, and REM). Results: The SDV changes from wakeful stage (mean 0.7021, standard deviation 0.2702) to stage N3 (mean 0.0396, standard deviation 0.0969). During the arousal epochs, the SDV increases from the range (0.1 to 0.3) to the range around 0.7, and decreases below 0.3. When in the deep sleep (<= 0.1), the probability of arousal of normal individuals is less than 10%, while the average arousal probability of OSA patients is close to 30%. Conclusion: A sleep continuity model is proposed based on multi-feature fusion, which generates SDV ranging from 0 to 1 (representing deep sleep to wakefulness). It can capture the nuances of the traditional five stages and subtle differences in microstates of sleep, considered as a complement or even an alternative to traditional sleep analysis.
引用
收藏
页码:769 / 786
页数:18
相关论文
共 50 条
  • [21] Series Arc Fault Detection Technology Based on Multi-feature Fusion Neural Network
    Long G.
    Mu H.
    Zhang D.
    Li Y.
    Zhang G.
    Gaodianya Jishu/High Voltage Engineering, 2021, 47 (02): : 463 - 471
  • [22] A new multi-feature fusion based convolutional neural network for facial expression recognition
    Zou, Wei
    Zhang, Dong
    Lee, Dah-Jye
    APPLIED INTELLIGENCE, 2022, 52 (03) : 2918 - 2929
  • [23] Medical brain image classification based on multi-feature fusion of convolutional neural network
    Wang, Dan
    Zhao, Hongwei
    Li, Qingliang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (01) : 127 - 137
  • [24] A new multi-feature fusion based convolutional neural network for facial expression recognition
    Wei Zou
    Dong Zhang
    Dah-Jye Lee
    Applied Intelligence, 2022, 52 : 2918 - 2929
  • [25] Phishing Detection Based on Multi-Feature Neural Network
    Yu, Shuaicong
    An, Changqing
    Yu, Tao
    Zhao, Ziyi
    Li, Tianshu
    Wang, Jilong
    2022 IEEE INTERNATIONAL PERFORMANCE, COMPUTING, AND COMMUNICATIONS CONFERENCE, IPCCC, 2022,
  • [26] Convolutional neural network and multi-feature fusion for automatic modulation classification
    Wu, Hao
    Li, Yaxing
    Zhou, Liang
    Meng, Jin
    ELECTRONICS LETTERS, 2019, 55 (16) : 895 - +
  • [27] Visualization and classification of mushroom species with multi-feature fusion of metaheuristics-based convolutional neural network model
    Ozbay, Erdal
    Ozbay, Feyza Altunbey
    Gharehchopogh, Farhad Soleimanian
    APPLIED SOFT COMPUTING, 2024, 164
  • [28] Multi-Feature Fusion Based Model for MOOC Recommendation
    Shu, Xinfeng
    Cao, Wangmei
    Wang, Shuyan
    Computer Engineering and Applications, 2023, 59 (10) : 123 - 133
  • [29] Multi-feature decomposition and transformer-fusion: an infrared and visible image fusion network based on multi-feature decomposition and transformer
    Li, Xujun
    Duan, Zhicheng
    Chang, Jia
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (06)
  • [30] Research on rectal tumor identification method by convolutional neural network based on multi-feature fusion
    Liang Z.
    Wu J.
    Wu, Jiansheng (ssewu@163.com), 1600, University of Split (34): : 31 - 41