LiDAR-Forest Dataset: LiDAR Point Cloud Simulation Dataset for Forestry Application

被引:1
|
作者
Lu, Yawen [1 ]
Sun, Zhuoyang [1 ]
Shao, Jinyuan [2 ]
Guo, Qianyu [1 ]
Huang, Yunhan [1 ]
Fei, Songlin [2 ]
Chen, Victor [1 ]
机构
[1] Purdue Univ, Polytech Inst, W Lafayette, IN 47907 USA
[2] Purdue Univ, Dept Forestry & Nat Resources, W Lafayette, IN 47907 USA
关键词
Computing methodologies; Modeling and simulation; Simulation support systems; Simulation environments; Computer graphics; Shape modeling; Point-based models;
D O I
10.1109/VRW62533.2024.00025
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The popularity of LiDAR devices and sensor technology has gradually empowered users from autonomous driving to forest monitoring, and research on 3D LiDAR has made remarkable progress over the years. Unlike 2D images, whose focused area is visible and rich in texture information, understanding the point distribution can help companies and researchers find better ways to develop point-based 3D applications. In this work, we contribute an unreal-based LiDAR simulation tool and a 3D simulation dataset named LiDAR-Forest, which can be used by various studies to evaluate forest reconstruction, tree DBH estimation, and point cloud compression for easy visualization. The simulation is customizable in tree species, LiDAR types and scene generation, with low cost and high efficiency.
引用
收藏
页码:112 / 116
页数:5
相关论文
共 50 条
  • [21] Automatic Lidar Point Cloud Segmentation
    Che, Erzhuo
    Olsen, Michael J.
    GIM INTERNATIONAL-THE WORLDWIDE MAGAZINE FOR GEOMATICS, 2019, 33 (04): : 19 - 21
  • [22] Downtown Dublin as a Lidar Point Cloud
    Zolanvari, S. M. Iman
    Natanzi, Atteyeh S.
    GIM INTERNATIONAL-THE WORLDWIDE MAGAZINE FOR GEOMATICS, 2019, 33 (06): : 26 - 29
  • [23] Advances in LIDAR point cloud processing
    Ullrich, Andreas
    Pfennigbauer, Martin
    LASER RADAR TECHNOLOGY AND APPLICATIONS XXIV, 2019, 11005
  • [24] HeLiPR: Heterogeneous LiDAR dataset for inter-LiDAR place recognition under spatiotemporal variations
    Jung, Minwoo
    Yang, Wooseong
    Lee, Dongjae
    Gil, Hyeonjae
    Kim, Giseop
    Kim, Ayoung
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2024, 43 (12): : 1867 - 1883
  • [25] Registration-based point cloud deskewing and dynamic lidar simulation
    Zhao, Yuan
    Khoshelham, Kourosh
    Khodabandeh, Amir
    PHOTOGRAMMETRIC RECORD, 2024, 39 (188): : 831 - 844
  • [26] LIDAR Point Cloud Augmentation for Dusty Weather Based on a Physical Simulation
    Lian, Haojie
    Sun, Pengfei
    Meng, Zhuxuan
    Li, Shengze
    Wang, Peng
    Qu, Yilin
    MATHEMATICS, 2024, 12 (01)
  • [27] Saint Petersburg 3D: Creating a Large-Scale Hybrid Mobile LiDAR Point Cloud Dataset for Geospatial Applications
    Lytkin, Sergey
    Badenko, Vladimir
    Fedotov, Alexander
    Vinogradov, Konstantin
    Chervak, Anton
    Milanov, Yevgeny
    Zotov, Dmitry
    REMOTE SENSING, 2023, 15 (11)
  • [28] TUM-MLS-2016: An Annotated Mobile LiDAR Dataset of the TUM City Campus for Semantic Point Cloud Interpretation in Urban Areas
    Zhu, Jingwei
    Gehrung, Joachim
    Huang, Rong
    Borgmann, Bjoern
    Sun, Zhenghao
    Hoegner, Ludwig
    Hebel, Marcus
    Xu, Yusheng
    Stilla, Uwe
    REMOTE SENSING, 2020, 12 (11)
  • [29] Registration of LiDAR Data and Dense-Matching Point Cloud in Forest Areas
    Tao, Wang
    2018 IEEE 3RD INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC), 2018, : 601 - 604
  • [30] Cirrus: A Long-range B -pattern LiDAR Dataset
    Wang, Ze
    Ding, Sihao
    Li, Ying
    Fenn, Jonas
    Roychowdhury, Sohini
    Wallin, Andreas
    Martin, Lane
    Ryvola, Scott
    Sapiro, Guillermo
    Qiu, Qiang
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 5744 - 5750