LiDAR-Forest Dataset: LiDAR Point Cloud Simulation Dataset for Forestry Application

被引:1
|
作者
Lu, Yawen [1 ]
Sun, Zhuoyang [1 ]
Shao, Jinyuan [2 ]
Guo, Qianyu [1 ]
Huang, Yunhan [1 ]
Fei, Songlin [2 ]
Chen, Victor [1 ]
机构
[1] Purdue Univ, Polytech Inst, W Lafayette, IN 47907 USA
[2] Purdue Univ, Dept Forestry & Nat Resources, W Lafayette, IN 47907 USA
关键词
Computing methodologies; Modeling and simulation; Simulation support systems; Simulation environments; Computer graphics; Shape modeling; Point-based models;
D O I
10.1109/VRW62533.2024.00025
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The popularity of LiDAR devices and sensor technology has gradually empowered users from autonomous driving to forest monitoring, and research on 3D LiDAR has made remarkable progress over the years. Unlike 2D images, whose focused area is visible and rich in texture information, understanding the point distribution can help companies and researchers find better ways to develop point-based 3D applications. In this work, we contribute an unreal-based LiDAR simulation tool and a 3D simulation dataset named LiDAR-Forest, which can be used by various studies to evaluate forest reconstruction, tree DBH estimation, and point cloud compression for easy visualization. The simulation is customizable in tree species, LiDAR types and scene generation, with low cost and high efficiency.
引用
收藏
页码:112 / 116
页数:5
相关论文
共 50 条
  • [1] LiDAR-CS Dataset: LiDAR Point Cloud Dataset with Cross-Sensors for 3D Object Detection
    Fang, Jin
    Zhou, Dingfu
    Zhao, Jingjing
    Wu, Chenming
    Tang, Chulin
    Xu, Cheng-Zhong
    Zhang, Liangjun
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2024), 2024, : 14822 - 14829
  • [2] CSPC-Dataset: New LiDAR Point Cloud Dataset and Benchmark for Large-Scale Scene Semantic Segmentation
    Tong, Guofeng
    Li, Yong
    Chen, Dong
    Sun, Qi
    Cao, Wei
    Xiang, Guiqiu
    IEEE ACCESS, 2020, 8 : 87695 - 87718
  • [3] Terrestrial LiDAR point cloud dataset of cocoa trees grown in agroforestry systems in Cameroon
    Peynaud, Emilie
    Takoudjou, Stephane Momo
    DATA IN BRIEF, 2024, 53
  • [4] A LiDAR Point Clouds Dataset of Ships in a Maritime Environment
    Qiuyu Zhang
    Lipeng Wang
    Hao Meng
    Wen Zhang
    Genghua Huang
    IEEE/CAAJournalofAutomaticaSinica, 2024, 11 (07) : 1681 - 1694
  • [5] A LiDAR Point Clouds Dataset of Ships in a Maritime Environment
    Zhang, Qiuyu
    Wang, Lipeng
    Meng, Hao
    Zhang, Wen
    Huang, Genghua
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2024, 11 (07) : 1681 - 1694
  • [6] The polar mesospheric cloud dataset of the Balloon Lidar Experiment (BOLIDE)
    Kaifler, Natalie
    Kaifler, Bernd
    Rapp, Markus
    Fritts, David C.
    EARTH SYSTEM SCIENCE DATA, 2022, 14 (11) : 4923 - 4934
  • [7] The need for a National Lidar Dataset
    Stoker, Jason
    Harding, David
    Parrish, Jay
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2008, 74 (09): : 1066 - 1068
  • [8] TrainSim: A Railway Simulation Framework for LiDAR and Camera Dataset Generation
    DAmico, Gianluca
    Marinoni, Mauro
    Nesti, Federico
    Rossolini, Giulio
    Buttazzo, Giorgio
    Sabina, Salvatore
    Lauro, Gianluigi
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (12) : 15006 - 15017
  • [9] PCGen: Point Cloud Generator for LiDAR Simulation
    Li, Chenqi
    Ren, Yuan
    Liu, Bingbing
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 11676 - 11682
  • [10] Impact of LiDAR point cloud compression on 3D object detection evaluated on the KITTI dataset
    Martins, Nuno A. B.
    Cruz, Luis A. da Silva
    Lopes, Fernando
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2024, 2024 (01)