Ranking Extensions in Abstract Argumentation

被引:0
|
作者
Skiba, Kenneth [1 ]
Rienstra, Tjitze [1 ]
Thimm, Matthias [1 ]
Heyninck, Jesse [2 ]
Kern-Isberner, Gabriele [2 ]
机构
[1] Univ Koblenz Landau, Koblenz, Germany
[2] TU Dortmund, Dortmund, Germany
关键词
ACCEPTABILITY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Extension-based semantics in abstract argumentation provide a criterion to determine whether a set of arguments is acceptable or not. In this paper, we present the notion of extension-ranking semantics, which determines a preordering over sets of arguments, where one set is deemed more plausible than another if it is somehow more acceptable. We obtain extension-based semantics as a special case of this new approach, but it also allows us to make more fine-grained distinctions, such as one set being "more complete" or "more admissible" than another. We define a number of general principles to classify extension-ranking semantics and develop concrete approaches. We also study the relation between extension-ranking semantics and argument-ranking semantics, which rank individual arguments instead of sets of arguments.
引用
收藏
页码:2047 / 2053
页数:7
相关论文
共 50 条
  • [21] Aggregating Alternative Extensions of Abstract Argumentation Frameworks: Preservation Results for Quota Rules
    Chen, Weiwei
    Endriss, Ulle
    COMPUTATIONAL MODELS OF ARGUMENT (COMMA 2018), 2018, 305 : 425 - 436
  • [22] New stochastic local search approaches for computing preferred extensions of abstract argumentation
    Niu, Dangdang
    Liu, Lei
    Lu, Shuai
    AI COMMUNICATIONS, 2018, 31 (04) : 369 - 382
  • [23] Validation of Labelling Algorithms for Abstract Argumentation Frameworks: The Case of Listing Stable Extensions
    Nofal, Samer
    Abu Jabal, Amani
    Alfarrarjeh, Abdullah
    Hababeh, Ismail
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2022, PT I, 2023, 13588 : 423 - 435
  • [24] Skeptical Reasoning with Preferred Semantics in Abstract Argumentation without Computing Preferred Extensions
    Thimm, Matthias
    Cerutti, Federico
    Vallati, Mauro
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 2069 - 2075
  • [25] A New Stochastic Local Search Approach for Computing Preferred Extensions of Abstract Argumentation
    Niu, Dangdang
    Liu, Lei
    Lu, Shuai
    ECAI 2016: 22ND EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, 285 : 1652 - 1653
  • [26] Abstract argumentation
    Imperial Coll of Science, London, United Kingdom
    Artif Intell Law, 3-4 (275-296):
  • [27] Combining Extension-Based Semantics and Ranking-Based Semantics for Abstract Argumentation
    Bonzon, Elise
    Delobelle, Jerome
    Konieczny, Sebastien
    Maudet, Nicolas
    SIXTEENTH INTERNATIONAL CONFERENCE ON PRINCIPLES OF KNOWLEDGE REPRESENTATION AND REASONING, 2018, : 118 - 127
  • [28] Dual-Neighborhood Tabu Search for Computing Stable Extensions in Abstract Argumentation Frameworks
    Ke, Yuanzhi
    Hu, Xiaogang
    Sun, Junjie
    Wu, Xinyun
    Xiong, Caiquan
    Luo, Mao
    APPLIED SCIENCES-BASEL, 2024, 14 (15):
  • [29] Abstract argumentation systems
    Vreeswijk, GAW
    ARTIFICIAL INTELLIGENCE, 1997, 90 (1-2) : 225 - 279
  • [30] Preference in Abstract Argumentation
    Kaci, Souhila
    van der Torre, Leendert
    Villata, Serena
    COMPUTATIONAL MODELS OF ARGUMENT (COMMA 2018), 2018, 305 : 405 - 412