Quasi-Random Boolean Functions

被引:0
|
作者
Chung, Fan [1 ]
Sieger, Nicholas [1 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2024年 / 31卷 / 02期
关键词
REGULAR PARTITIONS; HYPERGRAPHS; LEMMA;
D O I
10.37236/11568
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We examine a hierarchy of equivalence classes of local quasi-random properties of Boolean Functions. In particular, we prove an equivalence between a number of properties including balanced influences, spectral discrepancy, local strong regularity, subgraph counts in a Cayley graph associated to a Boolean function, and equidistribution of additive derivatives among many others. In addition, we construct families of quasi-random Boolean functions which exhibit the properties of our equivalence theorem and separate the levels of our hierarchy. Furthermore, we relate our properties to several extant notions of pseudo-randomness for Boolean functions.
引用
收藏
页数:42
相关论文
共 50 条
  • [31] Quasi-random points keep their distance
    Sobol, I. M.
    Shukhman, B. V.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2007, 75 (3-4) : 80 - 86
  • [32] Quasi-Random Multimetallic Nanoparticle Arrays
    Freire-Fernandez, Francisco
    Reese, Thaddeus
    Rhee, Dongjoon
    Guan, Jun
    Li, Ran
    Schaller, Richard D.
    Schatz, George C.
    Odom, Teri W.
    ACS NANO, 2023, 17 (21) : 21905 - 21911
  • [33] Quasi-random graphs and graph limits
    Janson, Svante
    EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (07) : 1054 - 1083
  • [34] Large hole in quasi-random graphs
    Polcyn, Joanna
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [35] Cooperative phenomena in a quasi-random antiferromagnet
    Todate, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2004, 73 (01) : 198 - 205
  • [36] QUASI-RANDOM ASSIGNMENT CAN BE AS CONVINCING AS RANDOM ASSIGNMENT
    BAER, DM
    AMERICAN JOURNAL ON MENTAL RETARDATION, 1993, 97 (04): : 373 - 375
  • [37] On randomization of Halton quasi-random sequences
    Ermakov S.M.
    Vestnik St. Petersburg University, Mathematics, 2017, 50 (4) : 337 - 341
  • [38] PSEUDORANDOM NUMBERS AND QUASI-RANDOM POINTS
    NIEDERREITER, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1993, 73 (7-8): : T648 - T652
  • [39] Remarks on randomization of quasi-random numbers
    Ermakov, Sergej M.
    Leora, Svetlana N.
    MONTE CARLO METHODS AND APPLICATIONS, 2018, 24 (02): : 139 - 145
  • [40] Quasi-random nonlinear scale space
    Mishra, Akshaya
    Wong, Alexander
    Clausi, David A.
    Fieguth, Paul W.
    PATTERN RECOGNITION LETTERS, 2010, 31 (13) : 1850 - 1859