Characterization of material flow behavior in friction stir welded AA2014 aluminum alloy joints

被引:2
|
作者
Xavier, Josephraj Francis [2 ]
Rajendran, Chinnasamy [3 ]
Sivamaran, Venkatesan [4 ]
Mandal, Tapas Kumar [1 ]
机构
[1] Yeungnam Univ, Sch Mech Engn, Gyongsan 712749, South Korea
[2] VIT Bhopal Univ, Sehore, India
[3] Sri Krishna Coll Engn & Technol, Coimbatore 641008, India
[4] Univ Limerick, Bernal Inst, Limerick, Ireland
关键词
FSW; riveted joint; peak load; microstructure; SEM; TEM;
D O I
10.1515/mt-2023-0370
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Steel rivets serve as a substitute material for connecting similar and dissimilar materials within the structural fabrication industries. However, the use of steel rivets can result in a significant increase in the structure's weight and may trigger corrosion at the interface due to galvanic coupling. Combining dissimilar alloys through the fusion welding process poses numerous challenges for manufacturers and designers. A solid-state welding technique called friction stir welding (FSW) has been developed. FSW can effectively join materials without reaching their melting points, relying on severe plastic deformation and recrystallization to form a welded joint. The proper selection of the tool and process parameters is essential for achieving a sound weld. The findings of this study indicate that plastic deformation, material flow, and recrystallization play pivotal roles in the strength of the joint. This implies that FSW represents an ideal joining process for high-strength alloys and serves as a viable alternative to replace permanent joints like rivets.
引用
收藏
页码:1053 / 1062
页数:10
相关论文
共 50 条
  • [31] Strength and fracture behavior of AA2A14-T6 aluminum alloy friction stir welded joints
    Yue Wang
    He Ma
    Peng Chai
    Yanhua Zhang
    Welding in the World, 2021, 65 : 1483 - 1499
  • [32] Plastic deformation behavior of the friction stir welded AA2024 aluminum alloy
    Zhang, Peng
    Guo, Ning
    Chen, Gang
    Meng, Qiang
    Dong, Chunlin
    Zhou, Li
    Feng, Jicai
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2014, 74 (5-8): : 673 - 679
  • [33] Effect of rolling on friction stir welded joints of aluminum alloy
    Jin Y.
    Wu Y.
    Wang X.
    Guo T.
    Hanjie Xuebao/Transactions of the China Welding Institution, 2019, 40 (04): : 50 - 54
  • [34] Fatigue of Friction Stir Welded Aluminum Alloy Joints: A Review
    Li, Hongjun
    Gao, Jian
    Li, Qinchuan
    APPLIED SCIENCES-BASEL, 2018, 8 (12):
  • [35] Fatigue strength of friction stir welded aluminum alloy joints
    Qu, Hongqiu
    Tsujikawa, Masato
    Chung, Sung Wook
    Oki, Sachio
    Higashi, Kenji
    RECRYSTALLIZATION AND GRAIN GROWTH III, PTS 1 AND 2, 2007, 558-559 : 793 - +
  • [36] A fuzzy model to predict the mechanical characteristics of friction stir welded joints of aluminum alloy AA2014-T6
    Ashok, S. K.
    Sathya, S. Ponni Alias
    AERONAUTICAL JOURNAL, 2023, 127 (1311): : 818 - 830
  • [37] Microstructure Evolution, Mechanical, and Corrosion Behavior of Cryogenic Friction Stir-Processed AA2014 Alloy
    Satyanarayana, Marukurthi V. N. V.
    Kumar, Adepu
    ADVANCED ENGINEERING MATERIALS, 2021, 23 (12)
  • [38] Mechanical strength and corrosion behavior of dissimilar friction stir welded AA7075-AA2014 joints
    Raturi, Madhav
    Bhattacharya, Anirban
    MATERIALS CHEMISTRY AND PHYSICS, 2021, 262
  • [39] Material Flow Behavior of Refill Friction Stir Spot Welded LY12 Aluminum Alloy
    Ji, Shude
    Li, Zhengwei
    Wang, Yue
    Ma, Lin
    Zhang, Liguo
    HIGH TEMPERATURE MATERIALS AND PROCESSES, 2017, 36 (05) : 495 - 504
  • [40] Effect of Deformation on the Corrosion Behavior of Friction Stir Welded Joints of 2024 Aluminum Alloy
    Pang, Qiu
    Zhao, Man
    Hu, Zhi-Li
    MATERIALS, 2022, 15 (06)