Bi-HS-RRTX: an efficient sampling-based motion planning algorithm for unknown dynamic environments

被引:0
|
作者
Liao, Longjie [1 ]
Xu, Qimin [1 ]
Zhou, Xinyi [1 ]
Li, Xu [1 ]
Liu, Xixiang [1 ]
机构
[1] Southeast Univ, Sch Instrument Sci & Engn, Nanjing, Peoples R China
关键词
Motion planning; Bidirectional search; Replanning; Dynamic environments; Heuristic sampling;
D O I
10.1007/s40747-024-01557-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the field of autonomous mobile robots, sampling-based motion planning methods have demonstrated their efficiency in complex environments. Although the Rapidly-exploring Random Tree (RRT) algorithm and its variants have achieved significant success in known static environment, it is still challenging in achieving optimal motion planning in unknown dynamic environments. To address this issue, this paper proposes a novel motion planning algorithm Bi-HS-RRTX, which facilitates asymptotically optimal real-time planning in continuously changing unknown environments. The algorithm swiftly determines an initial feasible path by employing the bidirectional search. When dynamic obstacles render the planned path infeasible, the bidirectional search is reactivated promptly to reconstruct the search tree in a local area, thereby significantly reducing the search planning time. Additionally, this paper adopts a hybrid heuristic sampling strategy to optimize the planned path quality and search efficiency. The convergence of the proposed algorithm is accelerated by merging local biased sampling with nominal path and global heuristic sampling in hyper-ellipsoid region. To verify the effectiveness and efficiency of the proposed algorithm in unknown dynamic environments, numerous comparative experiments with existing algorithms were conducted. The experimental results indicate that the proposed planning algorithm has significant advantages in planned path length and planning time.
引用
收藏
页码:7497 / 7512
页数:16
相关论文
共 50 条
  • [21] A batch informed sampling-based algorithm for fast anytime asymptotically-optimal motion planning in cluttered environments
    Xu, Jing
    Song, Kechen
    Dong, Hongwen
    Yan, Yunhui
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 144
  • [22] Sampling-Based Methods for Motion Planning with Constraints
    Kingston, Zachary
    Moll, Mark
    Kavraki, Lydia E.
    ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS, VOL 1, 2018, 1 : 159 - 185
  • [23] A batch informed sampling-based algorithm for fast anytime asymptotically-optimal motion planning in cluttered environments
    Xu, Jing
    Song, Kechen
    Dong, Hongwen
    Yan, Yunhui
    Expert Systems with Applications, 2021, 144
  • [24] Sampling-based algorithms for optimal motion planning
    Karaman, Sertac
    Frazzoli, Emilio
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2011, 30 (07): : 846 - 894
  • [25] An Effort Bias for Sampling-based Motion Planning
    Kiesel, Scott
    Gu, Tianyi
    Ruml, Wheeler
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 2864 - 2871
  • [26] Sampling-based Motion Planning with Temporal Goals
    Bhatia, Amit
    Kavraki, Lydia E.
    Vardi, Moshe Y.
    2010 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2010, : 2689 - 2696
  • [27] Current issues in sampling-based motion planning
    Lindemann, SR
    LaValle, SM
    ROBOTICS RESEARCH, 2005, 15 : 36 - 54
  • [28] Sampling-Based Motion Planning: A Comparative Review
    Orthey, Andreas
    Chamzas, Constantinos
    Kavraki, Lydia E.
    ANNUAL REVIEW OF CONTROL ROBOTICS AND AUTONOMOUS SYSTEMS, 2024, 7 : 285 - 310
  • [29] The Critical Radius in Sampling-based Motion Planning
    Solovey, Kiril
    Kleinbort, Michal
    ROBOTICS: SCIENCE AND SYSTEMS XIV, 2018,
  • [30] Custom distribution for sampling-based motion planning
    Flores-Aquino, Gabriel O.
    Irving Vasquez-Gomez, J.
    Gutierrez-Frias, Octavio
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2022, 44 (03)