Thermodynamic, economic, and environmental analyses and multi-objective optimization of a CCHP system based on solid oxide fuel cell and gas turbine hybrid power cycle

被引:15
|
作者
Huang, Zihao [1 ]
You, Huailiang [1 ,2 ]
Chen, Daifen [1 ]
Hu, Bin [2 ]
Liu, Cunbo [2 ]
Xiao, Yan [3 ]
Prokazov, Aleksandr [1 ,4 ]
Lysyakov, Anatoly [4 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Energy & Power, Zhenjiang 212003, Peoples R China
[2] Shantui Construct Machinery Co Ltd, Jining 272073, Peoples R China
[3] Jiangsu Univ Sci & Technol, Sch Econ & Management, Zhenjiang 212003, Peoples R China
[4] Natl Res Ogarev Mordovia State Univ, Saransk 430005, Russia
基金
中国国家自然科学基金;
关键词
CCHP system; Solid oxide fuel cell; Thermodynamic analysis; Environmental analysis; Multi -objective optimization; ADVANCED EXERGOECONOMIC ASSESSMENTS; ADVANCED EXERGY; ENERGY; SOFC; MANAGEMENT; DRIVEN;
D O I
10.1016/j.fuel.2024.131649
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A combined cooling, heating, and power (CCHP) system integrated with a solid oxide fuel cell (SOFC) and gas turbine (GT) is characterized by high efficiency and low carbon emission. The integration and performance optimization of CCHP systems based on SOFCs are the hot spots in the field of research. This paper conducts thermodynamic, economic, and environmental analyses of a novel CCHP system composed of SOFC, GT, Rankine cycle (RC), organic Rankine cycle (ORC), steam ejector refrigerator (SER), and heat exchanger. A mathematical model of the entire system is established, and the system performance evaluations under the design and offdesign conditions are analyzed and presented. The analysis results demonstrate that the system has been designed to deliver a total of 1,000.50 kW, 32.91 kW, and 195.06 kW of cooling, heating, and electrical products. The overall energy, electrical, and exergy efficiencies of the system were 78.55 %, 65.73 %, and 61.20 %, respectively. The analysis of system parameters such as current density, fuel utilization factor, compression ratios of compressors, steam to carbon, and air flow rate on system performance are conducted to explore the reasonable design ranges of parameters. At last, a multi-objective optimization using the non-dominated sequential genetic algorithm-II (NSGA-II) method is accomplished to achieve the optimal performance and parameters of the system in four assumptive scenarios with different types of target weights. The optimization results indicate that the optimal system exergy efficiency is 65.15 % with the system total cost and CO2 emission being 29.25 $/h and 0.2742 kg/kWh under the equal target weighting scenario, which are improved by 6.45 %, 3.43 %, and 8.84 % compared with those of under the designed condition.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Thermo-economic optimization of an indirectly coupled solid oxide fuel cell/gas turbine hybrid power plant
    Centre for Engineering Systems, University of Trinidad and Tobago, Point Lisas Campus, Esperanza Road, Brechin Castle, Couva, Trinidad and Tobago
    Int J Hydrogen Energy, 1600, 2 (1702-1709):
  • [32] Thermo-economic optimization of an indirectly coupled solid oxide fuel cell/gas turbine hybrid power plant
    Cheddie, Denver F.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (02) : 1702 - 1709
  • [33] Multi-objective Matching Optimization for Hybrid Fuel-Cell Power System in Trams
    Fu W.
    Qi H.
    Dai C.
    Li M.
    Liu Z.
    Chen W.
    Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 2020, 55 (03): : 604 - 611
  • [34] Solid Oxide Fuel Cell - Gas Turbine Hybrid Power Plant
    Henke, M.
    Willich, C.
    Steilen, M.
    Kallo, J.
    Friedrich, K. A.
    SOLID OXIDE FUEL CELLS 13 (SOFC-XIII), 2013, 57 (01): : 67 - 72
  • [35] Thermo-Economic Analysis and Multi-Objective Optimization of a Poly-Generation System Based on Solid Oxide Fuel Cell/Gas Turbine/Multi-Effect Distillation and Absorption Chiller Using Biogas as Fuel
    Liu, Yang
    Yu, Xuechao
    Lu, Haozheng
    Tian, Chongyi
    ENERGIES, 2024, 17 (01)
  • [36] Cycle analysis of micro gas turbine-solid oxide fuel cell hybrid system
    Uechi, Hideyuki
    Kimijima, Shinji
    Kasagi, Nobuhide
    Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 2002, 68 (666): : 626 - 635
  • [37] Performance analysis and multi-objective optimization for a hybrid system based on solid oxide fuel cell and supercritical CO2 Brayton cycle with energetic and ecological objective approaches
    Guo, Yumin
    Guo, Xinru
    Wang, Jiangfeng
    Guan, Zixuan
    Wang, Ziyan
    Zhang, Yu
    Wu, Weifeng
    Wang, Xiaopo
    APPLIED THERMAL ENGINEERING, 2023, 221
  • [38] Multi-objective optimization and dynamic characteristic analysis of solid oxide fuel cell- Supercritical carbon dioxide brayton cycle hybrid system
    Wang, Di
    Zhang, Yuxin
    Sun, Lingfang
    Han, Xinrui
    Zhou, Yunlong
    Wang, Yanhong
    Sun, Lu
    ENERGY, 2024, 313
  • [39] Multi-scale assessment and multi-objective optimization of a novel solid oxide fuel cell hybrid power system fed by bio-syngas
    Zhao, Zhongkai
    Shi, Xiaomin
    Zhang, Mingliang
    Ouyang, Tiancheng
    JOURNAL OF POWER SOURCES, 2022, 524
  • [40] Multi-scale assessment and multi-objective optimization of a novel solid oxide fuel cell hybrid power system fed by bio-syngas
    Zhao, Zhongkai
    Shi, Xiaomin
    Zhang, Mingliang
    Ouyang, Tiancheng
    Journal of Power Sources, 2022, 524