Multi-Source Domain Adaptation Enhanced Warehouse Dwell Time Prediction

被引:0
|
作者
Zhao, Wei [1 ]
Mao, Jiali [1 ]
Lv, Xingyi [1 ]
Jin, Cheqing [1 ]
Zhou, Aoying [1 ]
机构
[1] East China Normal Univ, Sch Data Sci & Engn, Shanghai 200062, Peoples R China
关键词
Attention; bulk logistics; queuing system; transfer learning; QUEUE;
D O I
10.1109/TKDE.2023.3324656
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Warehouse dwell time (WDT) of a truck is a critical metric for evaluating plant-logistics efficiency, including the time of the truck's queuing outside and loading inside the warehouse. But WDT prediction is challenging as it is affected by diverse factors like loading distinct types and weights of the cargoes, and varying amounts of loading tasks in different time slots. Besides, each trucks' WDT is transitively influenced by its preceding trucks' loading time in the queue. In this paper, we propose a multi-block dwell time prediction framework consisting of LSTM model and self-attention mechanism, called SDP. In view of that low performance of SDP brought by sparse loading data of some warehouses, we further design a multi-source adaptation based block-to-block transfer learning module. We present a warehouse similarity measurement based on loading tasks allocated and loading ability of the warehouses, according to which we enhance overall prediction performance by learning from high-performance WDT prediction models of similar warehouses. Experimental results on a large-scale logistics data set demonstrate that our proposal can reduce Mean Absolute Percentage Error (MAPE) by an average of 10.0%, Mean Absolute Error(MAE) by an average of 16.5%, and Root Mean Square Error(RMSE) by an average of 17.0% as compared to the baselines.
引用
收藏
页码:2533 / 2547
页数:15
相关论文
共 50 条
  • [31] Multi-Source Domain Adaptation via Latent Domain Reconstruction
    Zhou, Jun
    Fu, Chilin
    Zhang, Xiaolu
    COMPANION OF THE WORLD WIDE WEB CONFERENCE, WWW 2023, 2023, : 523 - 527
  • [32] Unsupervised multi-source domain adaptation with no observable source data
    Jeon, Hyunsik
    Lee, Seongmin
    Kang, U.
    PLOS ONE, 2021, 16 (07):
  • [33] Multi-EPL: Accurate multi-source domain adaptation
    Lee, Seongmin
    Jeon, Hyunsik
    Kang, U.
    PLOS ONE, 2021, 16 (08):
  • [34] Multi-source unsupervised domain adaptation for object detection
    Zhang, Dan
    Ye, Mao
    Liu, Yiguang
    Xiong, Lin
    Zhou, Lihua
    INFORMATION FUSION, 2022, 78 : 138 - 148
  • [35] STEM: An approach to Multi-source Domain Adaptation with Guarantees
    Nguyen, Van-Anh
    Nguyen, Tuan
    Le, Trung
    Tran, Quan Hung
    Phung, Dinh
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9332 - 9343
  • [36] Weighted progressive alignment for multi-source domain adaptation
    Kunhong Wu
    Liang Li
    Yahong Han
    Multimedia Systems, 2023, 29 : 117 - 128
  • [37] Riemannian representation learning for multi-source domain adaptation
    Chen, Sentao
    Zheng, Lin
    Wu, Hanrui
    PATTERN RECOGNITION, 2023, 137
  • [38] Multi-Source Unsupervised Domain Adaptation with Prototype Aggregation
    Huang, Min
    Xie, Zifeng
    Sun, Bo
    Wang, Ning
    MATHEMATICS, 2025, 13 (04)
  • [39] Multi-Source Domain Adaptation for Visual Sentiment Classification
    Lin, Chuang
    Zhao, Sicheng
    Meng, Lei
    Chua, Tat-Seng
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 2661 - 2668
  • [40] Attention-Based Multi-Source Domain Adaptation
    Zuo, Yukun
    Yao, Hantao
    Xu, Changsheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3793 - 3803