Probabilistic Graphical Models with Neural Networks in InferPy

被引:0
|
作者
Cabanas, Rafael [1 ]
Cozar, Javier [2 ,3 ]
Salmeron, Antonio [2 ,3 ]
Masegosa, Andres R. [2 ,3 ]
机构
[1] Ist Dalle Molle Studi Intelligenza Artificiale ID, Lugano, Switzerland
[2] Univ Almeria, Dept Math, Almeria, Spain
[3] Univ Almeria, Ctr Dev & Transfer Math Res Ind CDTIME, Almeria, Spain
关键词
Deep probabilistic modeling; Hierarchical probabilistic models; Variational Inference; Bayesian learning; TensorFlow; Keras; User-friendly;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
InferPy is an open-source Python package for variational inference in probabilistic models containing neural networks. Other similar libraries are often difficult for non-expert users. InferPy provides a much more compact and simple way to code such models, at the expense of slightly reducing expressibility and flexibility. The main objective of this package is to permit its use without having a strong theoretical background or thorough knowledge of the deep learning frameworks.
引用
收藏
页码:601 / 604
页数:4
相关论文
共 50 条
  • [31] Probabilistic Variational Bounds for Graphical Models
    Liu, Qiang
    Fisher, John, III
    Ihler, Alexander
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [32] Optical Implementation of Probabilistic Graphical Models
    Blanche, Pierre-Alexandre
    Babaeian, Masoud
    Glick, Madeleine
    Wissinger, John
    Norwood, Robert
    Peyghambarian, Nasser
    Neifeld, Mark
    Thamvichai, Ratchaneekorn
    2016 IEEE INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC), 2016,
  • [33] Fast Inference for Probabilistic Graphical Models
    Jiang, Jiantong
    Wen, Zeyi
    Mansoor, Atif
    Mian, Ajmal
    PROCEEDINGS OF THE 2024 USENIX ANNUAL TECHNICAL CONFERENCE, ATC 2024, 2024, : 95 - 110
  • [34] Probabilistic graphical models for computational biomedicine
    Moreau, Y
    Antal, P
    Fannes, G
    De Moor, B
    METHODS OF INFORMATION IN MEDICINE, 2003, 42 (02) : 161 - 168
  • [35] Statistical inference with probabilistic graphical models
    Shah, Devavrat
    STATISTICAL PHYSICS, OPTIMIZATION, INFERENCE, AND MESSAGE-PASSING ALGORITHMS, 2016, : 1 - 27
  • [36] Teaching Probabilistic Graphical Models with OpenMarkov
    Javier Diez, Francisco
    Arias, Manuel
    Perez-Martin, Jorge
    Luque, Manuel
    MATHEMATICS, 2022, 10 (19)
  • [37] The Hugin Tool for probabilistic graphical models
    Madsen, AL
    Jensen, F
    Kjaerulff, UB
    Lang, M
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2005, 14 (03) : 507 - 543
  • [38] New trends in probabilistic graphical models
    Gámez, JA
    Salmerón, A
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2004, 12 : V - VI
  • [39] Evaluating probabilistic graphical models for forecasting
    Ibarguengoytia, Pablo H.
    Reyes, Alberto
    Garcia, Uriel A.
    Romero, Ines
    Pech, David
    2015 18TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEM APPLICATION TO POWER SYSTEMS (ISAP), 2015,
  • [40] Recent Advances in Probabilistic Graphical Models
    Bielza, Concha
    Moral, Serafin
    Salmeron, Antonio
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2015, 30 (03) : 207 - 208