Deep learning based event reconstruction for cyclotron radiation emission spectroscopy

被引:0
|
作者
Esfahani, A. Ashtari [1 ,2 ]
Boeser, S. [3 ]
Buzinsky, N. [4 ]
Carmona-Benitez, M. C. [5 ]
Cervantes, R. [1 ,2 ]
Claessens, C. [1 ,2 ]
de Viveiros, L. [5 ]
Fertl, M. [3 ]
Formaggio, J. A. [4 ]
Gaison, J. K. [6 ]
Gladstone, L. [7 ]
Grando, M. [6 ]
Guigue, M. [6 ]
Hartse, J. [1 ,2 ]
Heeger, K. M. [8 ]
Huyan, X. [6 ]
Jones, A. M. [6 ]
Kazkaz, K. [9 ]
Li, M. [4 ]
Lindman, A. [3 ]
Marsteller, A. [1 ,2 ]
Matthe, C. [3 ]
Mohiuddin, R. [7 ]
Monreal, B. [7 ]
Morrison, E. C. [6 ]
Mueller, R. [5 ]
Nikkel, J. A. [8 ]
Novitski, E. [1 ,2 ]
Oblath, N. S. [6 ]
Pena, J., I [4 ]
Pettus, W. [10 ,11 ]
Reimann, R. [3 ]
Robertson, R. G. H. [1 ,2 ]
Saldana, L. [8 ]
Schram, M. [6 ]
Slocum, P. L. [8 ]
Stachurska, J. [4 ]
Sun, Y-H [7 ]
Surukuchi, P. T. [8 ]
Telles, A. B. [8 ]
Thomas, F. [3 ]
Thomas, M. [6 ]
Thorne, L. A. [3 ]
Thuemmler, T. [12 ]
Tvrznikova, L. [9 ]
Van De Pontseele, W. [4 ]
VanDevender, B. A. [1 ,2 ,6 ]
Weiss, T. E. [8 ]
Wendler, T. [5 ]
Zayas, E. [4 ]
机构
[1] Univ Washington, Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA
[2] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[3] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
[4] MIT, Lab Nucl Sci, Cambridge, MA 02139 USA
[5] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[6] Pacific Northwest Natl Lab, Richland, WA 99354 USA
[7] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA
[8] Yale Univ, Dept Phys, Wright Lab, New Haven, CT 06520 USA
[9] Lawrence Livermore Natl Lab, Nucl & Chem Sci, Livermore, CA 94550 USA
[10] Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47405 USA
[11] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA
[12] Karlsruhe Inst Technol, Inst Astroparticle Phys, D-76021 Karlsruhe, Germany
来源
基金
美国能源部; 美国国家科学基金会;
关键词
neutrino mass; cyclotron radiation; Project; 8; machine learning; deep learning; convolutional neural network; unet;
D O I
10.1088/2632-2153/ad3ee3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The objective of the cyclotron radiation emission spectroscopy (CRES) technology is to build precise particle energy spectra. This is achieved by identifying the start frequencies of charged particle trajectories which, when exposed to an external magnetic field, leave semi-linear profiles (called tracks) in the time-frequency plane. Due to the need for excellent instrumental energy resolution in application, highly efficient and accurate track reconstruction methods are desired. Deep learning convolutional neural networks (CNNs) - particularly suited to deal with information-sparse data and which offer precise foreground localization-may be utilized to extract track properties from measured CRES signals (called events) with relative computational ease. In this work, we develop a novel machine learning based model which operates a CNN and a support vector machine in tandem to perform this reconstruction. A primary application of our method is shown on simulated CRES signals which mimic those of the Project 8 experiment-a novel effort to extract the unknown absolute neutrino mass value from a precise measurement of tritium beta --decay energy spectrum. When compared to a point-clustering based technique used as a baseline, we show a relative gain of 24.1% in event reconstruction efficiency and comparable performance in accuracy of track parameter reconstruction.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Brain microstructure reconstruction based on deep learning
    Xie Q.
    Chen X.
    Shen L.
    Li G.
    Ma H.
    Han H.
    Han, Hua (hua.han@ia.ac.cn), 2018, Systems Engineering Society of China (38): : 482 - 491
  • [22] Deep learning based MRI reconstruction with transformer
    Wu, Zhengliang
    Liao, Weibin
    Yan, Chao
    Zhao, Mangsuo
    Liu, Guowen
    Ma, Ning
    Li, Xuesong
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 233
  • [23] Color Hologram Reconstruction Based on Deep Learning
    Liu Juntong
    Gui Jinbin
    Chen Aishuai
    Ma Xiandong
    Hu Xianfei
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (08)
  • [24] Deep Learning Based Fingerprint Subsurface Reconstruction
    Liu F.
    Zhang W.-T.
    Liu H.-Z.
    Liu G.-J.
    Shen L.-L.
    Jisuanji Xuebao/Chinese Journal of Computers, 2021, 44 (10): : 2033 - 2046
  • [25] CYCLOTRON RADIATION EMISSION AND ABSORPTION AT FUNDAMENTAL FREQUENCY
    CELATA, CM
    BOYD, DA
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (07): : 861 - 861
  • [26] Raman spectroscopy and deep learning for tumour radiation response characterization
    Fuentes, Alejandra Maria
    Milligan, Kirsty
    Wiebe, Mitchell
    Narayan, Apurva
    Lum, Julian J.
    Brolo, Alexandre G.
    Andrews, Jeffrey L.
    Jirasek, Andrew
    MEDICAL PHYSICS, 2024, 51 (08) : 5816 - 5817
  • [27] Sound Event Localization and Detection Based on Deep Learning
    Zhao, Dada
    Ding, Kai
    Qi, Xiaogang
    Chen, Yu
    Feng, Hailin
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2024, 35 (02) : 294 - 301
  • [28] Event Recognition Based on Deep Learning in Chinese Texts
    Zhang, Yajun
    Liu, Zongtian
    Zhou, Wen
    PLOS ONE, 2016, 11 (08):
  • [29] Sound Event Localization and Detection Based on Deep Learning
    Zhao, Dada
    Ding, Kai
    Qi, Xiaogang
    Chen, Yu
    Feng, Hailin
    Journal of Systems Engineering and Electronics, 2024, 35 (02) : 294 - 301
  • [30] Soccer Video Event Detection Based on Deep Learning
    Yu, Junqing
    Lei, Aiping
    Hu, Yangliu
    MULTIMEDIA MODELING, MMM 2019, PT II, 2019, 11296 : 377 - 389