Van der Waals engineering toward designer spintronic heterostructures

被引:3
|
作者
Song, Jizhe [1 ]
Chen, Jianing [2 ]
Sun, Mengtao [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
来源
基金
美国国家科学基金会;
关键词
Van der Waals; Engineering; Designer; Spintronic; Heterostructures; FRACTIONAL CHERN INSULATORS; SPIN; GRAPHENE; FERROMAGNETISM; VALLEY; SUPERCONDUCTIVITY; MAGNETORESISTANCE; POLARIZATION; STATE;
D O I
10.1016/j.mtelec.2023.100070
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This perspective explores the emerging field of spintronics within the context of two-dimensional van der Waals (vdW) heterostructures. Spintronics has opened exciting possibilities in the realm of two-dimensional (2D) materials. The integration of diverse 2D materials within vdW heterostructures has unveiled a plethora of previously unknown physical phenomena and potential applications related to spin -dependent transport, gatetunable spin transport, spin filtering effects, and the emergence of ferromagnetism. These advancements have expanded the scope of spintronics beyond traditional bulk materials, offering unique opportunities for efficient spin injection, manipulation, and detection in 2D devices. A deep understanding of how different materials and interfaces are interconnected and how they affect spin properties is essential for improving the effectiveness and control of spin injection and detection. The study of spintronics in vdW heterostructures holds great promise for advancing the frontiers of developing the next generation of spintronic and quantum devices, revolutionizing information technology and nanoelectronics.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Ultrafast dynamics in van der Waals heterostructures
    Jin, Chenhao
    Ma, Eric Yue
    Karni, Ouri
    Regan, Emma C.
    Wang, Feng
    Heinz, Tony F.
    NATURE NANOTECHNOLOGY, 2018, 13 (11) : 994 - 1003
  • [32] Quantum microscopy with van der Waals heterostructures
    A. J. Healey
    S. C. Scholten
    T. Yang
    J. A. Scott
    G. J. Abrahams
    I. O. Robertson
    X. F. Hou
    Y. F. Guo
    S. Rahman
    Y. Lu
    M. Kianinia
    I. Aharonovich
    J.-P. Tetienne
    Nature Physics, 2023, 19 : 87 - 91
  • [33] Thermal response in van der Waals heterostructures
    Gandi, Appala Naidu
    Alshareef, Husam N.
    Schwingenschlogl, Udo
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (03)
  • [34] Picosecond photoresponse in van der Waals heterostructures
    Massicotte, M.
    Schmidt, P.
    Vialla, F.
    Schaedler, K. G.
    Reserbat-Plantey, A.
    Watanabe, K.
    Taniguchi, T.
    Tielrooij, K. J.
    Koppens, F. H. L.
    NATURE NANOTECHNOLOGY, 2016, 11 (01) : 42 - +
  • [35] Multiferroicity in atomic van der Waals heterostructures
    Cheng Gong
    Eun Mi Kim
    Yuan Wang
    Geunsik Lee
    Xiang Zhang
    Nature Communications, 10
  • [36] Devices and applications of van der Waals heterostructures
    Chao Li
    Peng Zhou
    David Wei Zhang
    Journal of Semiconductors, 2017, 38 (03) : 48 - 56
  • [37] The Coulomb interaction in van der Waals heterostructures
    Le Huang
    MianZeng Zhong
    HuiXiong Deng
    Bo Li
    ZhongMing Wei
    JingBo Li
    SuHuai Wei
    Science China Physics, Mechanics & Astronomy, 2019, 62
  • [38] Dielectric Genome of van der Waals Heterostructures
    Andersen, Kirsten
    Latini, Simone
    Thygesen, Kristian S.
    NANO LETTERS, 2015, 15 (07) : 4616 - 4621
  • [39] Exciton landscape in van der Waals heterostructures
    Hagel, Joakim
    Brem, Samuel
    Linderalv, Christopher
    Erhart, Paul
    Malic, Ermin
    PHYSICAL REVIEW RESEARCH, 2021, 3 (04):
  • [40] Multiferroicity in atomic van der Waals heterostructures
    Gong, Cheng
    Kim, Eun Mi
    Wang, Yuan
    Lee, Geunsik
    Zhang, Xiang
    NATURE COMMUNICATIONS, 2019, 10 (1)