WILD SOLUTIONS TO SCALAR EULER-LAGRANGE EQUATIONS

被引:0
|
作者
Johansson, Carl johan peter [1 ]
机构
[1] EPFL SB, Stn 8, CH-1015 Lausanne, Switzerland
关键词
AHLFORS-BEURLING OPERATOR; CONVEX INTEGRATION; REGULARITY; CONJECTURE; COUNTEREXAMPLES; PROOF;
D O I
10.1090/tran/9090
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
. We study very weak solutions to scalar Euler-Lagrange equations associated with quadratic convex functionals. We investigate whether W1,1 solutions are necessarily W 1,2 Nash and Schauder applicable. We answer this question positively for a suitable class of functionals. This is an extension of Weyl's classical lemma for the Laplace equation to a wider class of equations under stronger regularity assumptions. Conversely, using convex integration, we show that outside this class of functionals, there exist W1,1 solutions of locally infinite energy to scalar Euler-Lagrange equations. In addition, we prove an intermediate result which permits the regularity of a W1,1 solution to be improved to W 1,2 suitable assumptions on the functional and solution.
引用
收藏
页码:4931 / 4960
页数:30
相关论文
共 50 条
  • [21] SOME INVARIANTS CONNECTED WITH EULER-LAGRANGE EQUATIONS
    Comic, Irena
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2009, 71 (02): : 3 - 18
  • [22] Conservative numerical schemes for Euler-Lagrange equations
    Vázquez, L
    Jiménez, S
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1999, 112 (05): : 455 - 459
  • [23] Variational C∞-symmetries and Euler-Lagrange equations
    Muriel, C
    Romero, JL
    Olver, PJ
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 222 (01) : 164 - 184
  • [24] EXTENDED HARMONIC MAPPINGS AND EULER-LAGRANGE EQUATIONS
    Kikuchi, Keiichi
    PROCEEDINGS OF THE SEVENTEENTH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2016, : 284 - 295
  • [25] Reduction of Euler-Lagrange equations in gauge theories
    Geyer, B
    Gitman, D
    Tyutin, I
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2003, 18 (12): : 2077 - 2084
  • [26] On the metrics and Euler-Lagrange equations of computational anatomy
    Miller, MI
    Trouvé, A
    Younes, L
    ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2002, 4 : 375 - 405
  • [27] New order reductions for Euler-Lagrange equations
    Muriel, C
    Romero, JL
    SPT 2004: SYMMETRY AND PERTURBATION THEORY, 2005, : 236 - 243
  • [28] The Hamiltonian canonical form for Euler-Lagrange equations
    Zheng, Y
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2002, 38 (04) : 385 - 394
  • [29] Generalized Variational Problems and Euler-Lagrange equations
    Agrawal, Om Prakash
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (05) : 1852 - 1864
  • [30] ON THE NUMERICAL-SOLUTION OF THE EULER-LAGRANGE EQUATIONS
    RABIER, PJ
    RHEINBOLDT, WC
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (01) : 318 - 329