WILD SOLUTIONS TO SCALAR EULER-LAGRANGE EQUATIONS

被引:0
|
作者
Johansson, Carl johan peter [1 ]
机构
[1] EPFL SB, Stn 8, CH-1015 Lausanne, Switzerland
关键词
AHLFORS-BEURLING OPERATOR; CONVEX INTEGRATION; REGULARITY; CONJECTURE; COUNTEREXAMPLES; PROOF;
D O I
10.1090/tran/9090
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
. We study very weak solutions to scalar Euler-Lagrange equations associated with quadratic convex functionals. We investigate whether W1,1 solutions are necessarily W 1,2 Nash and Schauder applicable. We answer this question positively for a suitable class of functionals. This is an extension of Weyl's classical lemma for the Laplace equation to a wider class of equations under stronger regularity assumptions. Conversely, using convex integration, we show that outside this class of functionals, there exist W1,1 solutions of locally infinite energy to scalar Euler-Lagrange equations. In addition, we prove an intermediate result which permits the regularity of a W1,1 solution to be improved to W 1,2 suitable assumptions on the functional and solution.
引用
收藏
页码:4931 / 4960
页数:30
相关论文
共 50 条
  • [1] Solutions of Euler-Lagrange equations in fractional mechanics
    Klimek, M.
    XXVI WORKSHOP ON GEOMETRICAL METHODS IN PHYSICS, 2007, 956 : 73 - 78
  • [2] On exact solutions of a class of fractional Euler-Lagrange equations
    Baleanu, Dumitru
    Trujillo, Juan J.
    NONLINEAR DYNAMICS, 2008, 52 (04) : 331 - 335
  • [3] On the generalized Euler-Lagrange equations
    Chen, JW
    Lai, HC
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 213 (02) : 681 - 697
  • [4] B-Spline Solutions of General Euler-Lagrange Equations
    Sun, Lanyin
    Zhu, Chungang
    MATHEMATICS, 2019, 7 (04):
  • [5] Classical solutions for nonelliptic Euler-Lagrange equations via continuation
    Lilli, Markus
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (03) : 801 - 818
  • [6] EULER-LAGRANGE EQUATIONS ON CANTOR SETS
    Baleanu, Dumitru
    Yang, Xiao-Jun
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2013, VOL 4, 2014,
  • [7] On the global version of Euler-Lagrange equations
    Saraví, REG
    Solomin, JE
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (26): : 7301 - 7305
  • [8] Fractional Euler-Lagrange equations revisited
    Herzallah, Mohamed A. E.
    Baleanu, Dumitru
    NONLINEAR DYNAMICS, 2012, 69 (03) : 977 - 982
  • [9] On a class of special Euler-Lagrange equations
    Yan, Baisheng
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023,
  • [10] On the Equivalence of Euler-Lagrange and Noether Equations
    A. C. Faliagas
    Mathematical Physics, Analysis and Geometry, 2016, 19