Cytochrome P450 Enzyme Design by Constraining the Catalytic Pocket in a Diffusion Model

被引:2
|
作者
Wang, Qian [1 ,2 ,3 ]
Liu, Xiaonan [1 ,2 ,3 ]
Zhang, Hejian [1 ,3 ,4 ]
Chu, Huanyu [1 ,2 ]
Shi, Chao [5 ]
Zhang, Lei [1 ,6 ]
Bai, Jie [1 ,3 ]
Liu, Pi [1 ,3 ]
Li, Jing [1 ,3 ,7 ,8 ]
Zhu, Xiaoxi [1 ,2 ,3 ]
Liu, Yuwan [1 ,3 ]
Chen, Zhangxin [5 ]
Huang, Rong [1 ,3 ]
Chang, Hong [1 ,3 ]
Liu, Tian [1 ,3 ]
Chang, Zhenzhan [5 ]
Cheng, Jian [1 ,3 ]
Jiang, Huifeng [1 ,3 ]
机构
[1] Chinese Acad Sci, Tianjin Inst Ind Biotechnol, Key Lab Engn Biol Low Carbon Mfg, Tianjin 300308, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Natl Ctr Technol Innovat Synthet Biol, Tianjin 300308, Peoples R China
[4] Tianjin Univ Sci & Technol, Coll Biotechnol, Tianjin 300457, Peoples R China
[5] Peking Univ, Sch Basic Med Sci, Dept Biochem & Biophys, Beijing 100191, Peoples R China
[6] Wuhan Polytech Univ, Coll Life Sci & Technol, Wuhan 430023, Peoples R China
[7] Nankai Univ, Coll Chem, State Key Lab Elemento Organ Chem, Tianjin 300071, Peoples R China
[8] Nankai Univ, Coll Life Sci, Tianjin 300071, Peoples R China
基金
中国博士后科学基金; 国家重点研发计划; 中国国家自然科学基金;
关键词
PROTEIN-SEQUENCE DESIGN; MOLECULAR-DYNAMICS; DIRECTED EVOLUTION; GENES; PREDICTION; ORIGIN; P450; REACTIVITY; MECHANISM; INSIGHTS;
D O I
10.34133/research.0413
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although cytochrome P450 enzymes are the most versatile biocatalysts in nature, there is insufficient comprehension of the molecular mechanism underlying their functional innovation process. Here, by combining ancestral sequence reconstruction, reverse mutation assay, and progressive forward accumulation, we identified 5 founder residues in the catalytic pocket of flavone 6-hydroxylase (F6H) and proposed a "3-point fixation" model to elucidate the functional innovation mechanisms of P450s in nature. According to this design principle of catalytic pocket, we further developed a de novo diffusion model (P450Diffusion) to generate artificial P450s. Ultimately, among the 17 non-natural P450s we generated, 10 designs exhibited significant F6H activity and 6 exhibited a 1.3- to 3.5-fold increase in catalytic capacity compared to the natural CYP706X1. This work not only explores the design principle of catalytic pockets of P450s, but also provides an insight into the artificial design of P450 enzymes with desired functions.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Reactivity and spectra of model cytochrome P450 catalytic intermediates
    Hackett, JC
    Brueggemeier, RW
    Hadad, CM
    DRUG METABOLISM REVIEWS, 2003, 35 : 99 - 99
  • [2] Structure and Catalytic Mechanism of Cytochrome P450
    Wang, Bin
    Li, Deyuan
    CHINESE JOURNAL OF ORGANIC CHEMISTRY, 2009, 29 (04) : 658 - 662
  • [3] Cytochrome P450 enzyme systems in fungi
    van den Brink, HJM
    van Gorcom, RFM
    van den Hondel, CAMJJ
    Punt, PJ
    FUNGAL GENETICS AND BIOLOGY, 1998, 23 (01) : 1 - 17
  • [4] THROMBOXANE SYNTHASE AS A CYTOCHROME P450 ENZYME
    ULLRICH, V
    HAURAND, M
    ADVANCES IN PROSTAGLANDIN THROMBOXANE AND LEUKOTRIENE RESEARCH, 1983, 11 : 105 - 110
  • [5] Catalytic activity of biomimetic model of cytochrome P450 in oxidation of dopamine
    Yan, Xiaoyi
    Lu, Nannan
    Gu, Yue
    Li, Cong
    Zhang, Tingting
    Liu, He
    Zhang, Zhiquan
    Zhai, Shengyong
    TALANTA, 2018, 179 : 401 - 408
  • [6] Cytochrome P450: taming a wild type enzyme
    Jung, Sang Taek
    Lauchli, Ryan
    Arnold, Frances H.
    CURRENT OPINION IN BIOTECHNOLOGY, 2011, 22 (06) : 809 - 817
  • [7] Crystal structure of a human cytochrome P450 enzyme
    Jhoti, H
    Williams, P
    Ward, A
    Cosme, J
    DRUG METABOLISM REVIEWS, 2002, 34 : 10 - 10
  • [8] Impact of Cytochrome P450 Enzyme on Fruit Quality
    Minerdi, Daniela
    Sabbatini, Paolo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (13)
  • [9] From electrochemistry to enzyme kinetics of cytochrome P450
    Shumyantseva, Victoria V.
    Kuzikov, Alexey V.
    Masamrekh, Rami A.
    Bulko, Tatiana V.
    Archakov, Alexander I.
    BIOSENSORS & BIOELECTRONICS, 2018, 121 : 192 - 204
  • [10] Structural diversity of cytochrome P450 enzyme system
    Omura, Tsuneo
    JOURNAL OF BIOCHEMISTRY, 2010, 147 (03): : 297 - 306