Comparison of the output of a deep learning segmentation model for locoregional breast cancer radiotherapy trained on 2 different datasets

被引:4
|
作者
Bakx, Nienke [1 ]
van der Sangen, Maurice [1 ]
Theuws, Jacqueline [1 ]
Bluemink, Hanneke [1 ]
Hurkmans, Coen [1 ,2 ]
机构
[1] Catharina Hosp, Dept Radiat Oncol, NL-5602ZA Eindhoven, Netherlands
[2] Tech Univ Eindhoven, Fac Phys & Elect Engn, NL-5600MB Eindhoven, Netherlands
关键词
Auto; -segmentation; Loco -regional breast cancer; Deep learning; Radiotherapy; Clinical validation; TARGET VOLUME DELINEATION; ELECTIVE RADIATION-THERAPY; ESTRO CONSENSUS GUIDELINE;
D O I
10.1016/j.tipsro.2023.100209
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Introduction: The development of deep learning (DL) models for auto-segmentation is increasing and more models become commercially available. Mostly, commercial models are trained on external data. To study the effect of using a model trained on external data, compared to the same model trained on in-house collected data, the performance of these two DL models was evaluated. Methods: The evaluation was performed using in-house collected data of 30 breast cancer patients. Quantitative analysis was performed using Dice similarity coefficient (DSC), surface DSC (sDSC) and 95th percentile of Hausdorff Distance (95% HD). These values were compared with previously reported inter-observer variations (IOV). Results: For a number of structures, statistically significant differences were found between the two models. For organs at risk, mean values for DSC ranged from 0.63 to 0.98 and 0.71 to 0.96 for the in-house and external model, respectively. For target volumes, mean DSC values of 0.57 to 0.94 and 0.33 to 0.92 were found. The difference of 95% HD values ranged 0.08 to 3.23 mm between the two models, except for CTVn4 with 9.95 mm. For the external model, both DSC and 95% HD are outside the range of IOV for CTVn4, whereas this is the case for the DSC found for the thyroid of the in-house model. Conclusions: Statistically significant differences were found between both models, which were mostly within published inter-observer variations, showing clinical usefulness of both models. Our findings could encourage discussion and revision of existing guidelines, to further decrease inter-observer, but also inter-institute variability.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Segmentation of Mammogram Images Using Deep Learning for Breast Cancer Detection
    Deb, Sagar Deep
    Jha, Rajib Kumar
    2022 2ND INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND ROBOTICS (ICIPROB), 2022,
  • [42] Segmentation and classification of breast cancer using novel deep learning architecture
    S. Ramesh
    S. Sasikala
    S. Gomathi
    V. Geetha
    V. Anbumani
    Neural Computing and Applications, 2022, 34 : 16533 - 16545
  • [43] Segmentation and classification of breast cancer using novel deep learning architecture
    Ramesh, S.
    Sasikala, S.
    Gomathi, S.
    Geetha, V
    Anbumani, V
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (19): : 16533 - 16545
  • [44] An Efficient Breast Cancer Segmentation System based on Deep Learning Techniques
    Shaaban, Shaaban M.
    Nawaz, Majid
    Said, Yahia
    Barr, Mohammad
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2023, 13 (06) : 12415 - 12422
  • [45] BREAST CANCER NUCLEI SEGMENTATION AND CLASSIFICATION BASED ON A DEEP LEARNING APPROACH
    Kowal, Marek
    Skobel, Marcin
    Gramacki, Artur
    Korbicz, Jozef
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2021, 31 (01) : 85 - 106
  • [46] Evaluation of deep learning-based autosegmentation in breast cancer radiotherapy
    Byun, Hwa Kyung
    Chang, Jee Suk
    Choi, Min Seo
    Chun, Jaehee
    Jung, Jinhong
    Jeong, Chiyoung
    Kim, Jin Sung
    Chang, Yongjin
    Chung, Seung Yeun
    Lee, Seungryul
    Kim, Yong Bae
    RADIATION ONCOLOGY, 2021, 16 (01)
  • [47] Evaluation of deep learning-based autosegmentation in breast cancer radiotherapy
    Hwa Kyung Byun
    Jee Suk Chang
    Min Seo Choi
    Jaehee Chun
    Jinhong Jung
    Chiyoung Jeong
    Jin Sung Kim
    Yongjin Chang
    Seung Yeun Chung
    Seungryul Lee
    Yong Bae Kim
    Radiation Oncology, 16
  • [48] Hybrid Deep Learning Model for Pancreatic Cancer Image Segmentation
    Bakasa, Wilson
    Kwenda, Clopas
    Viriri, Serestina
    ARTIFICIAL INTELLIGENCE IN PANCREATIC DISEASE DETECTION AND DIAGNOSIS, AND PERSONALIZED INCREMENTAL LEARNING IN MEDICINE, AIPAD 2024, PILM 2024, 2025, 15197 : 14 - 24
  • [49] Surface-guided radiotherapy systems in locoregional deep inspiration breath hold radiotherapy for breast cancer - a multicenter study on the setup accuracy
    Laaksomaa, Marko
    Aula, Antti
    Sarudis, Sebastian
    Keyrilainen, Jani
    Ahlroth, Jenni
    Murtola, Anna
    Pynnonen, Kiira
    Lehtonen, Turkka
    Bjorkqvist, Mikko
    Jarvinen, Lauri
    Rossi, Maija
    REPORTS OF PRACTICAL ONCOLOGY AND RADIOTHERAPY, 2024, 29 (02) : 176 - 186
  • [50] Unleashing the Power of Deep Learning for Breast Cancer Detection through Open Mammography Datasets
    Cadrin-Chenevert, Alexandre
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2023, 5 (02)