On gluing Alexandrov spaces with lowerRicci curvature bounds

被引:0
|
作者
Kapovitch, Vitali [1 ]
Ketterer, Christian [1 ]
Sturm, Karl-Theodor [2 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[2] Univ Bonn, Inst Appl Math, D-53115 Bonn, Germany
关键词
METRIC-MEASURE-SPACES; RICCI CURVATURE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that in the class of metric measure space with Alexandrov curvature bounded from below the Riemannian curvature-dimension condition RCD & lowast;(K, N) with K is an element of R & N is an element of [1, infinity) is preserved under doubling and gluing constructions pro-vided the weight in the measure is semiconcave.
引用
收藏
页码:1529 / 1564
页数:36
相关论文
共 50 条
  • [41] Isoperimetric problem and structure at infinity on Alexandrov spaces with nonnegative curvature
    Antonelli, Gioacchino
    Pozzetta, Marco
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 289 (04)
  • [42] Quasi-convex subsets in Alexandrov spaces with lower curvature bound
    Xiaole Su
    Hongwei Sun
    Yusheng Wang
    Frontiers of Mathematics, 2022, 17 : 1063 - 1082
  • [43] On curvature bounds in Lorentzian length spaces
    Beran, Tobias
    Kunzinger, Michael
    Rott, Felix
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 110 (02):
  • [44] Three-Dimensional Alexandrov Spaces with Positive or Nonnegative Ricci Curvature
    Qintao Deng
    Fernando Galaz-García
    Luis Guijarro
    Michael Munn
    Potential Analysis, 2018, 48 : 223 - 238
  • [45] Three-Dimensional Alexandrov Spaces with Positive or Nonnegative Ricci Curvature
    Deng, Qintao
    Galaz-Garcia, Fernando
    Guijarro, Luis
    Munn, Michael
    POTENTIAL ANALYSIS, 2018, 48 (02) : 223 - 238
  • [46] Analytic approaches and harmonic functions on Alexandrov spaces with nonnegative Ricci curvature
    Jiao, Zhenhua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 390 (01) : 301 - 306
  • [47] Quasi-convex subsets in Alexandrov spaces with lower curvature bound
    Su, Xiaole
    Sun, Hongwei
    Wang, Yusheng
    FRONTIERS OF MATHEMATICS IN CHINA, 2021, 17 (06) : 1063 - 1082
  • [48] On the equivalence of Alexandrov curvature and Busemann curvature
    Gu, Shijie
    TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (01) : 211 - 215
  • [49] A splitting theorem for infinite dimensional Alexandrov spaces with nonnegative curvature and its applications
    Ayato Mitsuishi
    Geometriae Dedicata, 2010, 144 : 101 - 114
  • [50] The Liouville’s theorem of harmonic functions on Alexandrov spaces with nonnegative Ricci curvature
    Zhenhua Jiao
    Qiang Li
    Indian Journal of Pure and Applied Mathematics, 2015, 46 : 51 - 58