共 50 条
On gluing Alexandrov spaces with lowerRicci curvature bounds
被引:0
|作者:
Kapovitch, Vitali
[1
]
Ketterer, Christian
[1
]
Sturm, Karl-Theodor
[2
]
机构:
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[2] Univ Bonn, Inst Appl Math, D-53115 Bonn, Germany
关键词:
METRIC-MEASURE-SPACES;
RICCI CURVATURE;
D O I:
暂无
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper we prove that in the class of metric measure space with Alexandrov curvature bounded from below the Riemannian curvature-dimension condition RCD & lowast;(K, N) with K is an element of R & N is an element of [1, infinity) is preserved under doubling and gluing constructions pro-vided the weight in the measure is semiconcave.
引用
收藏
页码:1529 / 1564
页数:36
相关论文