Gliding arc discharge in combination with Cu/Cu2O electrocatalysis for ammonia production

被引:1
|
作者
Liu, Xue [1 ,2 ]
Zhang, Jiawei [1 ,2 ]
He, Yi [1 ,2 ]
Huang, Jiamin [1 ,2 ]
Ma, Xiaoping
Zhang, Xiaoman [1 ,2 ]
Lu, Manting [1 ]
Xin, Yu [1 ,2 ]
机构
[1] Soochow Univ, Sch Phys Sci & Technol, Jiangsu Key Lab Thin Films, Suzhou 215006, Peoples R China
[2] Soochow Univ, Jiangsu Key Lab Adv Negat Carbon Technol, Suzhou 215123, Peoples R China
关键词
gliding arc discharge; nitrogen fixation; Cu/Cu2O catalyst; electrocatalytic reduction of nitrite; PLASMA; NITROGEN; REDUCTION; NITRATE; MODE;
D O I
10.1088/2058-6272/ad2d10
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Highly efficient and green ammonia production is an important demand for modern agriculture. In this study, a two-step ammonia production method is developed using a gliding arc discharge in combination with Cu/Cu2O electrocatalysis. In this method, NOx is provided by the gliding arc discharge and then electrolyzed by Cu/Cu2O after alkaline absorption. The electrical characteristics, the optical characteristics and the NOx production are investigated in discharges at different input voltage and the gas flow. The dependence of ammonia production through Cu/Cu2O electrocatalysis on pH value and reduction potential are determined by colorimetric method. In our study, two discharge modes are observed. At high input voltage and low gas flow, the discharge is operated with a stable plasma channel which is called the steady arc gliding discharge mode (A-G mode). As lowering input voltage and raising gas flow, the plasma channel is destroyed and high frequency breakdown occurs instead, which is known as the breakdown gliding discharge mode (B-G mode). The optimal NOx production of 7.34 mmol h(-1) is obtained in the transition stage of the two discharge modes. The ammonia yield reaches 0.402 mmol h(-1) cm(-2) at pH value of 12.7 and reduction potential of -1.0 V versus reversible hydrogen electrode (RHE).
引用
收藏
页数:7
相关论文
共 50 条
  • [41] NiO-Incorporated Cu/Cu2O Nanowires for Highly Efficient Electrochemical Nitrate Reduction to Ammonia
    Mo, Zuohong
    Ma, Zhihui
    Ran, Yinjun
    Wang, Yage
    Li, Tianhao
    Sun, Wei
    Hu, Weihua
    CHEMSUSCHEM, 2025, 18 (03)
  • [42] Exciton transport in Cu2O
    Tikhodeev, SG
    Gippius, NA
    Kopelevich, GA
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 2000, 178 (01): : 63 - 68
  • [43] LA phonoritons in Cu2O
    Hanke, L
    Fröhlich, D
    Ivanov, AL
    Littlewood, PB
    Stolz, H
    PHYSICAL REVIEW LETTERS, 1999, 83 (21) : 4365 - 4368
  • [44] Chlorine doping of Cu2O
    Biccari, Francesco
    Malerba, Claudia
    Mittiga, Alberto
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (11) : 1947 - 1952
  • [45] Photoelectrochemistry of electrodeposited Cu2O
    de Jongh, PE
    Vanmaekelbergh, D
    Kelly, JJ
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (02) : 486 - 489
  • [46] SYMMETRY OF EXCITONS IN CU2O
    ELLIOTT, RJ
    PHYSICAL REVIEW, 1961, 124 (02): : 340 - &
  • [47] ELECTROABSORPTION AND ELECTROREFLECTION OF CU2O
    DAUNOIS, A
    DEISS, JL
    NIKITINE, S
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE C, 1968, 267 (18): : 1081 - &
  • [48] RELAXED EXCITONS IN CU2O
    GASTEV, SV
    KAPLYANSKII, AA
    SOKOLOV, NS
    SOLID STATE COMMUNICATIONS, 1982, 42 (05) : 389 - 391
  • [49] Synergy in Pd/Cu2O 2 O heteronanostructure boosts the electrochemical conversion of nitrate to ammonia
    Choi, Hyoryung
    Jun, Minki
    Kang, Woojong
    Kim, Taekyung
    Choi, Songa
    Choi, Changhyeok
    Wang, Heryn
    Baik, Hionsuck
    Jung, Yousung
    Jin, Kyoungsuk
    Lee, Kwangyeol
    CHEM CATALYSIS, 2024, 4 (07):
  • [50] BIEXCITON IN CU2O CRYSTAL
    GROSS, EF
    KREINGOLD, FI
    JETP LETTERS-USSR, 1970, 12 (02): : 68 - +