Motion compensation for lidar tomography and remote sensing

被引:0
|
作者
Van Rynbach, Andre [1 ]
Krug, Sarah [1 ]
Hilton, Brandon [1 ]
Spivey, Brett [2 ]
机构
[1] Air Force Res Lab, Sensors Directorate, 2241 Avion Circle, Wright Patterson AFB, OH 45433 USA
[2] JASR Syst, 731 South Highway 101,Suite IK2, Solana Beach, CA 92075 USA
关键词
lidar; tomography; backprojection; remote sensing;
D O I
10.1117/12.3023221
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Lidar tomography is a method that constructs high-resolution images of objects from multiple range projections along different projection axes. This approach is one way to overcome traditional limitations in remote sensing with focal imaging such as diffraction, optical aberrations, and air turbulence. We have shown previously through detailed modelling and simulation that lidar tomography can generate resolved imagery of objects from a moving platform if sufficient diversity of view angles and appropriate geolocation accuracy requirements can be met. Here we show that the geolocation accuracy requirements can be met through a data-driven approach that does not require accurate knowledge of the platform's position relative to the object being imaged. This alleviates a significant technical burden of motion tracking and opens the way for a more practical implementation of the lidar tomography technique for remote sensing and imaging.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Utilization of pulsed diode lasers to lidar remote sensing
    Penchev, S
    Pencheva, V
    Naboko, V
    Naboko, S
    Simeonov, P
    11TH INTERNATIONAL SCHOOL ON QUANTUM ELECTRONICS: LASER PHYSICS AND APPLICATIONS, 2001, 4397 : 491 - 495
  • [42] Lidar remote sensing of forest resources at the scale of management
    Department of Forestry, Virginia Polytechnic Institute and State University, 319 Julian Cheatham Hall , Blacksburg, VA 24060, United States
    不详
    Photogramm. Eng. Remote Sens., 2006, 12 (1310-1314):
  • [43] Spaceborne Lidar Remote Sensing Progress and Developments (Invited)
    Chen, Weibiao
    Liu, Jiqiao
    Zhu, Xiaopeng
    Bi, Decang
    Hou, Xia
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2024, 51 (11):
  • [44] Status and prospects for LiDAR remote sensing of forested ecosystems
    Wulder, M. A.
    Coops, N. C.
    Hudak, A. T.
    Morsdorf, F.
    Nelson, R.
    Newnham, G.
    Vastaranta, M.
    CANADIAN JOURNAL OF REMOTE SENSING, 2013, 39 : S1 - S5
  • [45] Advances in atmospheric, hydrographic and vegetation remote sensing with lidar
    Devara P.C.S.
    Raj P.E.
    Pandithurai G.
    Maheskumar R.S.
    Dani K.K.
    Journal of the Indian Society of Remote Sensing, 1997, 25 (4) : 225 - 238
  • [46] Femtosecond LIDAR:: new perspectives of atmospheric remote sensing
    Rodriguez, M
    Bourayou, R
    Kasparian, J
    Méjean, G
    Mysyrowicz, A
    Salmon, E
    Sauerbrey, R
    Wille, H
    Wöste, L
    Wolf, JP
    Yu, J
    Zimmer, W
    LASER APPLICATIONS IN MEDICINE, BIOLOGY AND ENVIRONMENTAL SCIENCE, 2003, 5149 : 135 - 146
  • [47] Underwater Lidar: Remote Sensing in Strongly Scattering Media
    S. M. Pershin
    A. F. Bunkin
    V. A. Zavozin
    M. Ya. Grishin
    V. S. Makarov
    P. A. Titovets
    M. O. Fedyuk
    Physics of Wave Phenomena, 2023, 31 : 406 - 411
  • [48] REMOTE-SENSING OF NO USING A DIFFERENTIAL ABSORPTION LIDAR
    MENYUK, N
    KILLINGER, DK
    DEFEO, WE
    APPLIED OPTICS, 1980, 19 (19): : 3282 - 3286
  • [49] REMOTE-SENSING OF AIR-POLLUTION BY LIDAR
    WOLF, JP
    JOURNAL DE PHYSIQUE IV, 1991, 1 (C7): : 13 - 16
  • [50] Multi-Wavelength Lidar for Remote Sensing Applications
    Song, Shalei
    Li, Pingxiang
    Gong, Wei
    Zhang, Liangpei
    Chen, Tao
    EARTH OBSERVING SYSTEMS XIII, 2008, 7081