Hybrid principal component regression estimation in linear regression

被引:0
|
作者
Rong, Jian-Ying [1 ]
Liu, Xu-Qing [2 ]
机构
[1] Jiangsu Vocat Coll Elect & Informat, Dept Qual Educ, Huaian 223003, Peoples R China
[2] Huaiyin Inst Technol, Fac Math & Phys, Huaian 223003, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2024年 / 32卷 / 06期
关键词
hybrid PCR; linear regression; PCR; weighted PCR (WPCR); WPCR with nonnegative weights; RIDGE-REGRESSION; PREDICTION; CRITERION;
D O I
10.3934/era.2024171
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the principal component regression (PCR) estimators for regression parameters were studied in a linear regression model. After discussing the advantages and disadvantages of the classical PCR, we put forward three versions of hybrid PCR estimators. For the first two versions, we obtained the corresponding optimal solutions under the prediction error sum of squares (PRESS) criterion, while for the last one we offered two methods for obtaining the solution. In order to examine their practicality and generalizability, we considered two real-world examples and conducted a simulation study, which took into account varying degrees of multicollinearity. The numerical experiment revealed that the new estimators could substantially improve the least squares (LS) and classical PCR estimators under the PRESS criterion.
引用
收藏
页码:3758 / 3776
页数:19
相关论文
共 50 条
  • [21] A Principal Component Regression Approach for Estimation of Ventricular Repolarization Characteristics
    Lipponen, J. A.
    Tarvainen, M. P.
    Laitinen, T.
    Lyyra-Laitinen, T.
    Karjalainen, P. A.
    4TH EUROPEAN CONFERENCE OF THE INTERNATIONAL FEDERATION FOR MEDICAL AND BIOLOGICAL ENGINEERING, 2009, 22 (1-3): : 385 - 388
  • [22] A Principal Component Regression Approach for Estimation of Ventricular Repolarization Characteristics
    Lipponen, Jukka Antero
    Tarvainen, Mika P.
    Laitinen, Tomi
    Lyyra-Laitinen, Tiina
    Karjalainen, Pasi A.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010, 57 (05) : 1062 - 1069
  • [23] Principal simple linear regression
    Mardani-Fard, Heydar Ali
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2024, 53 (02): : 524 - 536
  • [24] Estimation of cropland prices in Rio Grande do Sul by multiple linear regression and principal component analysis
    Ziegler, Cristiano
    Fiegenbaum, Tobias da Paixao
    Ueda, Renan Mitsuo
    Lirio, Valentina Wolff
    Souza, Adriano Mendonca
    CIENCIA RURAL, 2023, 53 (01):
  • [25] Improved principal component analysis and linear regression classification for face recognition
    Zhu, Yani
    Zhu, Chaoyang
    Li, Xiaoxin
    SIGNAL PROCESSING, 2018, 145 : 175 - 182
  • [26] Bootstrapping principal component regression models
    Wehrens, R.
    Van Der Linden, W.E.
    Journal of Chemometrics, 11 (02): : 157 - 171
  • [27] Uncertainty quantification for principal component regression
    Wu, Suofei
    Hannig, Jan
    Lee, Thomas C. M.
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 2157 - 2178
  • [29] Bootstrapping principal component regression models
    Wehrens, R
    VanderLinden, WE
    JOURNAL OF CHEMOMETRICS, 1997, 11 (02) : 157 - 171
  • [30] Principal component regression analysis with SPSS
    Liu, RX
    Kuang, J
    Gong, Q
    Hou, XL
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2003, 71 (02) : 141 - 147