Gradient Estimation with Stochastic Softmax Tricks

被引:0
|
作者
Paulus, Max B. [1 ]
Choi, Dami [2 ]
机构
[1] Swiss Fed Inst Technol, Zurich, Switzerland
[2] Univ Toronto, Toronto, ON, Canada
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Gumbel-Max trick is the basis of many relaxed gradient estimators. These estimators are easy to implement and low variance, but the goal of scaling them comprehensively to large combinatorial distributions is still outstanding. Working within the perturbation model framework, we introduce stochastic softmax tricks, which generalize the Gumbel-Softmax trick to combinatorial spaces. Our framework is a unified perspective on existing relaxed estimators for perturbation models, and it contains many novel relaxations. We design structured relaxations for subset selection, spanning trees, arborescences, and others. When compared to less structured baselines, we find that stochastic softmax tricks can be used to train latent variable models that perform better and discover more latent structure.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] On Maximum a Posteriori Estimation with Plug & Play Priors and Stochastic Gradient Descent
    Laumont, Remi
    De Bortoli, Valentin
    Almansa, Andres
    Delon, Julie
    Durmus, Alain
    Pereyra, Marcelo
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2023, 65 (1) : 140 - 163
  • [42] A Lorentzian Stochastic Estimation for Video Super Resolution with Lorentzian Gradient Constraint
    He, Hailong
    He, Kai
    Zou, Gang
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2012, 58 (04) : 1294 - 1300
  • [43] DISTRIBUTIONALLY CONSTRAINED STOCHASTIC GRADIENT ESTIMATION USING NOISY FUNCTION EVALUATIONS
    Lam, Henry
    Zhang, Junhui
    2020 WINTER SIMULATION CONFERENCE (WSC), 2020, : 445 - 456
  • [44] Estimation of reaction kinetic parameters based on modified stochastic gradient descent
    Tang L.-S.
    Chen W.-F.
    Gao Xiao Hua Xue Gong Cheng Xue Bao/Journal of Chemical Engineering of Chinese Universities, 2022, 36 (03): : 426 - 436
  • [45] On Maximum a Posteriori Estimation with Plug & Play Priors and Stochastic Gradient Descent
    Rémi Laumont
    Valentin De Bortoli
    Andrés Almansa
    Julie Delon
    Alain Durmus
    Marcelo Pereyra
    Journal of Mathematical Imaging and Vision, 2023, 65 : 140 - 163
  • [46] Accelerating Stochastic Variance Reduced Gradient Using Mini-Batch Samples on Estimation of Average Gradient
    Huang, Junchu
    Zhou, Zhiheng
    Xu, Bingyuan
    Huang, Yu
    ADVANCES IN NEURAL NETWORKS, PT I, 2017, 10261 : 346 - 353
  • [47] Softmax policy gradient methods can take exponential time to converge
    Li, Gen
    Wei, Yuting
    Chi, Yuejie
    Chen, Yuxin
    MATHEMATICAL PROGRAMMING, 2023, 201 (1-2) : 707 - 802
  • [48] Softmax policy gradient methods can take exponential time to converge
    Gen Li
    Yuting Wei
    Yuejie Chi
    Yuxin Chen
    Mathematical Programming, 2023, 201 : 707 - 802
  • [49] Latest estimation based recursive stochastic gradient identification algorithms for ARX models
    Wu, Ai-Guo
    Fu, Fang-Zhou
    Teng, Yu
    2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 2033 - 2038
  • [50] Consistency of stochastic gradient parameter and missing output estimation by using a polynomial transformation
    Ding, Feng
    Chen, Huibo
    Xiao, Yongsong
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2006, 13 : 1308 - 1313