A novel temporal-spatial graph neural network for wind power forecasting considering blockage effects

被引:10
|
作者
Qiu, Hong [1 ]
Shi, Kaikai [1 ]
Wang, Renfang [1 ]
Zhang, Liang [1 ]
Liu, Xiufeng [2 ]
Cheng, Xu [2 ]
机构
[1] Zhejiang Wanli Univ, Sch Big Data & Software, Ningbo 315100, Peoples R China
[2] Tech Univ Denmark, Dept Technol Management & Econ, DK-2800 Lyngby, Denmark
基金
中国国家自然科学基金;
关键词
Wind power forecasting; Graph neural network; Temporal and spatial features; Blockage effect;
D O I
10.1016/j.renene.2024.120499
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wind Power Forecasting is crucial for the operational security, stability, and economic efficiency of the power grid, yet it faces significant accuracy challenges due to the variable nature of wind energy and complex interactions within wind farms. This study introduces a novel neural network model specifically designed for Wind Power Forecasting, incorporating both a gated dilated inception network and a graph neural network. This innovative approach enables the concurrent analysis of temporal and spatial features of wind energy, significantly enhancing the forecasting accuracy. A pivotal feature of this model is its unique mechanism to compute the mutual influence between wind turbines, with a particular focus on the blockage effect, a key factor in turbine interactions. The model's efficacy is validated using a real -world dataset, targeting a 48 -hour prediction horizon. The experimental outcomes demonstrate that this model achieves superior performance compared to state-of-the-art methods, with a notable improvement of 6.87% in Root Mean Square Error and 8.77% in Mean Absolute Error. This study not only highlights the model's enhanced forecasting capabilities but also emphasizes the importance of integrating spatial and temporal dynamics in wind farms for improving Wind Power Forecasting accuracy.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] MTGCN: Multi-graph Fusion Based Temporal-Spatial Convolution for Traffic Flow Forecasting
    Li, Chenghao
    Zhao, Linlin
    Zhang, Zhenguo
    2023 IEEE 3rd International Conference on Computer Communication and Artificial Intelligence, CCAI 2023, 2023, : 75 - 80
  • [42] Deep learning framework for forecasting en route airspace emissions considering temporal-spatial correlation
    Wan, Junqiang
    Zhang, Honghai
    Zhang, Qiqian
    Li, Max Z.
    Xu, Yan
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 905
  • [43] Spatial-temporal load forecasting of electric vehicle charging stations based on graph neural network
    Zhang, Yanyu
    Liu, Chunyang
    Rao, Xinpeng
    Zhang, Xibeng
    Zhou, Yi
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2024, 46 (01) : 821 - 836
  • [44] A Spatial-Temporal Aggregated Graph Neural Network for Docked Bike-sharing Demand Forecasting
    Feng, Jiahui
    Liu, Hefu
    Zhou, Jingmei
    Zhou, Yang
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (09)
  • [45] Multi-view Cascading Spatial-Temporal Graph Neural Network for Traffic Flow Forecasting
    Liu, Zibo
    Fu, Kaiqun
    Liu, Xiaotong
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT II, 2022, 13530 : 605 - 616
  • [46] Short-term load forecasting using spatial-temporal embedding graph neural network
    Wei, Chuyuan
    Pi, Dechang
    Ping, Mingtian
    Zhang, Haopeng
    ELECTRIC POWER SYSTEMS RESEARCH, 2023, 225
  • [47] A novel composite neural network based method for wind and solar power forecasting in microgrids
    Heydari, Azim
    Garcia, Davide Astiaso
    Keynia, Farshid
    Bisegna, Fabio
    De Santoli, Livio
    APPLIED ENERGY, 2019, 251
  • [48] Attention-aware temporal-spatial graph neural network with multi-sensor information fusion for fault diagnosis
    Wang, Zhe
    Wu, Zhiying
    Li, Xingqiu
    Shao, Haidong
    Han, Te
    Xie, Min
    KNOWLEDGE-BASED SYSTEMS, 2023, 278
  • [49] GGNet: A novel graph structure for power forecasting in renewable power plants considering temporal lead-lag correlations
    Zhu, Nanyang
    Wang, Ying
    Yuan, Kun
    Yan, Jiahao
    Li, Yaping
    Zhang, Kaifeng
    APPLIED ENERGY, 2024, 364
  • [50] Short-term Wind Power Forecasting Based on Spatial Correlation and Artificial Neural Network
    Chen, Qin
    Folly, Komla
    2020 INTERNATIONAL SAUPEC/ROBMECH/PRASA CONFERENCE, 2020, : 208 - 213