Inactivated lactobacillus plantarum promoted growth performance, intestine health and antioxidant capacity of juvenile largemouth bass, Micropterus salmoides

被引:0
|
作者
Liu, Wenkai [1 ,2 ]
Zhang, Jianmin [2 ]
Liu, Jingjing [3 ]
Wang, Xuan [4 ]
Dong, Lixue [2 ]
Gao, Xin [3 ]
Wen, Hua [2 ]
Jiang, Ming [2 ]
Meng, Xiaolin [1 ]
Tian, Juan [1 ,2 ]
机构
[1] Henan Normal Univ, Coll Fisheries, Xinxiang 453007, Peoples R China
[2] Chinese Acad Fishery Sci, Yangtze River Fisheries Res Inst, Key Lab Freshwater Biodivers Conservat, Minist Agr, Wuhan 430223, Peoples R China
[3] Jiangxi Heswof Biotechnol Co Ltd, Yichun 336000, Jiangxi, Peoples R China
[4] Ocean Univ China, Key Lab Mariculture, Minist Educ, Qingdao 266003, Peoples R China
关键词
Inactivated Lactobacillus plantarum; Micropterus salmoides; Growth performance; Intestinal bacteria; Immune function; IMMUNE-RESPONSE; EXPRESSION; TGF-BETA-1; MICROBIOTA; PROTEIN; STRESS; ENZYME;
D O I
10.1016/j.aqrep.2024.102158
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
To evaluate the effects of inactivated Lactobacillus plantarum (LPM) on carnivorous fish, juvenile largemouth bass [initial body mass: (5.62 +/- 0.13) g] were fed five isonitrogenous and isoenergetic diets containing 0 (M0), 200 (M1), 400 (M2), 600 (M3), and 800 (M4) mg/kg LPM for 8 weeks. The results showed that in terms of growth, weight gain rate (WGR) and specific growth rate (SGR) showed significant second-order polynomial trend with increasing LPM supplementation. WGR and SGR of the M3 group were significantly increased by 14.18% and 5.62%, respectively, compared with the M0 group. Significant linear and second order polynomial trends were observed for feed conversion ratio (FCR), protein efficiency ratio (PER) and protein deposition rate (PDR) with the increase in dietary LPM. FCR was significantly reduced by 8.9% in the M2 group compared to the M0 group. In terms of intestinal health, intestinal amylase, intestinal villi number, length and width showed significant second order polynomial trends with increasing LPM supplementation. Significant linear and second order polynomial trends were observed for intestinal lipase activity, liver crude fat content with increasing dietary LPM. Dietary LPM supplementation of 600 mg/kg significantly increased the abundance of beneficial bacteria. In terms of antioxidant capacity, with the increase of LPM supplemental level, superoxide dismutase activity, malondialdehyde content of serum and liver, and liver Cu/Zn-SOD, Keap-1 and TGF-beta 1 mRNA expression levels showed significant linear and second-order polynomial trend, and Nrf2 mRNA expression level showed a significant second-order polynomial trend. Overall, the appropriate level of LPM (400-600 mg/kg) promoted the growth performance and feed utilization of largemouth bass by increasing the abundance of intestinal bacteria, improving the activities of digestive enzymes and antioxidant enzymes, and up-regulating the mRNA expressions of genes related to antioxidants.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Effects of dietary yeast nucleotides on the growth performance and muscle quality of juvenile largemouth bass (Micropterus salmoides)
    Wang, Yuhui
    Wang, Jiahuang
    Liu, Lihe
    Xu, Hongsen
    Liang, Hongwei
    Wang, Zhongkai
    Gu, Jiajia
    AQUACULTURE REPORTS, 2024, 36
  • [22] Effects of partial substitution of enzymatic hydrolysate of poultry by-product meal for fishmeal on the growth performance, hepatic health, antioxidant capacity, and immunity of juvenile largemouth bass (Micropterus salmoides)
    Gu, Jiaze
    Zhang, Qile
    Huang, Dongyu
    Zhang, Lu
    Chen, Xiaoru
    Wang, Yongli
    Liang, Hualiang
    Ren, Mingchun
    AQUACULTURE REPORTS, 2024, 35
  • [23] Effects of Dietary Ursolic Acid on Growth Performance and Intestinal Health of Largemouth Bass (Micropterus salmoides)
    Wang, Min
    Wang, Yongfang
    Li, Xiang
    Yin, Yue
    Zhang, Xiwen
    Wu, Shuang
    Wang, Hongquan
    Zhao, Yurong
    ANIMALS, 2024, 14 (17):
  • [24] Dietary lipid sources affect growth performance, lipid deposition, antioxidant capacity and inflammatory response of largemouth bass ( Micropterus salmoides )
    Gong, Ye
    Chen, Shiwen
    Wang, Zhenjie
    Li, Wenfei
    Xie, Ruitao
    Zhang, Haitao
    Huang, Xuxiong
    Chen, Naisong
    Li, Songlin
    FISH & SHELLFISH IMMUNOLOGY, 2024, 150
  • [25] Effects of different photoperiods on growth performance and health status of largemouth bass (Micropterus salmoides) juveniles
    Malinovskyi, Oleksandr
    Rahimnejad, Samad
    Stejskal, Vlastimil
    Bonko, Dominik
    Stara, Alzbeta
    Velisek, Josef
    Policar, Tomas
    AQUACULTURE, 2022, 548
  • [26] Dietary bamboo vinegar powder improves growth performance, immunity, antioxidant capacity and lipid metabolism of largemouth bass (Micropterus salmoides)
    Lai, Weibin
    Xu, Shuwen
    Yu, Ran
    Li, Linyi
    Zuo, Yuanyi
    Yang, Manqi
    Zhang, Liangliang
    Lu, Liming
    Xu, Yong
    Liu, Yiwen
    Wang, Hua
    Jiang, Jianchun
    ANIMAL FEED SCIENCE AND TECHNOLOGY, 2025, 321
  • [27] Impact of supplementary Lactobacillus casei K17 on growth and gut health of largemouth bass Micropterus salmoides
    Wang, Jinsong
    Zhu, Zhuoying
    Li, Rui
    Wang, Xichang
    Leng, Xiangjun
    Chen, Lanming
    AQUACULTURE REPORTS, 2021, 20
  • [28] Impact of dietary vitamin c on plasma metabolites, antioxidant capacity and innate immunocompetence in juvenile largemouth bass, Micropterus salmoides
    Yusuf, Abdullateef
    Huang, Xuxiong
    Chen, Naisong
    Apraku, Andrews
    Wang, Weilong
    Cornel, Angela
    Rahman, Mohammad Mizanur
    AQUACULTURE REPORTS, 2020, 17
  • [29] Fermented tea residue improved growth performance, liver antioxidant capacity, intestinal morphology and resistance to Aeromonas hydrophila infection in juvenile largemouth bass (Micropterus salmoides)
    Jiang, Li
    Zhou, Xinhong
    Yu, Jing
    Bao, Songsong
    Li, Jin
    Wu, Qiuhong
    Wu, Mengjia
    Wang, Yachao
    Liu, Bo
    FRONTIERS IN MARINE SCIENCE, 2022, 9
  • [30] Effects of sodium butyrate on growth performance, antioxidant status, inflammatory response and resistance to hypoxic stress in juvenile largemouth bass (Micropterus salmoides)
    Hou, Dongqiang
    Li, Min
    Li, Peijia
    Chen, Bing
    Huang, Wen
    Guo, Hui
    Cao, Junming
    Zhao, Hongxia
    FRONTIERS IN IMMUNOLOGY, 2023, 14