Semi-porous-fin microchannel heat sinks for enhanced micro-electronics cooling

被引:3
|
作者
Fathi, Mostafa [1 ]
Heyhat, Mohammad Mahdi [1 ]
Targhi, Mohammad Zabetian [1 ]
Emadi, Arash [1 ]
机构
[1] Tarbiat Modares Univ, Dept Mech Engn, Tehran, Iran
基金
美国国家科学基金会;
关键词
Semi-porous-fin microchannel; Porous media; Micro-electronics cooling; Heat transfer enhancement; Heat sink; Thermal performance; PRESSURE-DROP; PERFORMANCE; DESIGN; FLUID;
D O I
10.1016/j.icheatmasstransfer.2024.107814
中图分类号
O414.1 [热力学];
学科分类号
摘要
With their ability to provide substantial solid-fluid interfacial areas, porous-fin microchannels emerge as a promising solution for the thermal management of upcoming microelectronic chips. Previous investigations have substantiated the enhanced hydrodynamic performance of porous-fin microchannels compared to their solid-fin counterparts. Nevertheless, it has been found that porous fins can diminish the thermal performance of straight plate-fin microchannel heat sinks at high channel heights due to their reduced effective thermal conductivity. In this paper, semi-porous fins that replace a portion of a solid fin height with a metallic porous fin are proposed as an alternative approach to concurrently improve the thermal and hydraulic performances of microchannel heat sinks. The effect of the porous height ratio, defined as the porous fin height to the overall fin height, on the thermo-hydraulic performances of semi-porous-fin microchannel heat sinks is examined. Results revealed that the thermal resistance decreases with an increase in the porous height ratio, reaching its lowest value at a ratio of 0.5. Beyond this point, a further increase in the porous height ratio results in an increase in the thermal resistance compared to an all-solid fin design. In other words, there exists a critical porous height ratio below which the thermal resistance of the semi-porous-fin microchannels is lower than that of the solid-fin microchannel. The semi-porous-fin microchannels have up to 11.12% lower thermal resistance compared to the solid-fin microchannel. Additionally, increasing the porous height ratio decreases the pressure drop penalty across all considered operating conditions. This research reveals that semi-porous fin structures could offer new pathways to improve the cooling performance of high-power electronic chips.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Numerical Investigation on Thermal Performance of PCM-Based Hybrid Microchannel Heat Sinks for Electronics Cooling Application
    Ramesh, K. Naga
    Sharma, T. Karthikeya
    Rao, G. Amba Prasad
    Murthy, K. Madhu
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (03) : 2779 - 2793
  • [32] Comparison of Micro-Pin-Fin and Microchannel Heat Sinks Considering Thermal-Hydraulic Performance and Manufacturability
    Jasperson, Benjamin A.
    Jeon, Yongho
    Turner, Kevin T.
    Pfefferkorn, Frank E.
    Qu, Weilin
    IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 2010, 33 (01): : 148 - 160
  • [33] Twenty first century cooling solution: Microchannel heat sinks
    Kadam, Sambhaji T.
    Kumar, Ritunesh
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2014, 85 : 73 - 92
  • [34] Numerical Investigation on Thermal Performance of PCM-Based Hybrid Microchannel Heat Sinks for Electronics Cooling Application
    K. Naga Ramesh
    T. Karthikeya Sharma
    G. Amba Prasad Rao
    K. Madhu Murthy
    Arabian Journal for Science and Engineering, 2023, 48 : 2779 - 2793
  • [35] Forced air cooling by using manifold microchannel heat sinks
    Kim, YI
    Chun, WC
    Kim, JT
    Pak, BC
    Baek, BJ
    KSME INTERNATIONAL JOURNAL, 1998, 12 (04): : 709 - 718
  • [36] Stacked microchannel heat sinks for liquid cooling of microelectronic components
    Wei, XJ
    Joshi, Y
    JOURNAL OF ELECTRONIC PACKAGING, 2004, 126 (01) : 60 - 66
  • [37] Forced air cooling by using manifold microchannel heat sinks
    Yong H Kim
    Woo Chong Chun
    Jin Taek Kim
    Bock Choon Pak
    Byoung Joon Baek
    KSME International Journal, 1998, 12 : 709 - 718
  • [38] Flow dynamics and heat transfer in partially porous microchannel heat sinks
    Zargartalebi, Mohammad
    Azaiez, Jalel
    JOURNAL OF FLUID MECHANICS, 2019, 875 : 1035 - 1057
  • [39] A comparative analysis of innovative microchannel heat sinks for electronic cooling
    Lu, Sainan
    Vafai, Kambiz
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2016, 76 : 271 - 284
  • [40] ENHANCED MICROCHANNEL HEAT SINKS USING OBLIQUE FINS
    Lee, Yong-Jiun
    Lee, Poh-Seng
    Chou, Siaw-Kiang
    IPACK 2009: PROCEEDINGS OF THE ASME INTERPACK CONFERENCE 2009, VOL 2, 2010, : 253 - 260