A DeNoising FPN With Transformer R-CNN for Tiny Object Detection

被引:14
|
作者
Liu, Hou-, I [1 ]
Tseng, Yu-Wen [2 ]
Chang, Kai-Cheng [2 ]
Wang, Pin-Jyun [1 ]
Shuai, Hong-Han [1 ]
Cheng, Wen-Huang [3 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Dept Elect & Elect Engn, Hsinchu 300, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Inst Elect, Hsinchu 300, Taiwan
[3] Natl Taiwan Univ NTU, Dept Comp Sci & Informat Engn, Taipei 106, Taiwan
关键词
Feature extraction; Semantics; Object detection; Noise; Detectors; Transformers; Noise reduction; Aerial image; contrastive learning; noise reduction; tiny object detection; transformer-based detector; DISTANCE; NETWORK;
D O I
10.1109/TGRS.2024.3396489
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Despite notable advancements in the field of computer vision (CV), the precise detection of tiny objects continues to pose a significant challenge, largely due to the minuscule pixel representation allocated to these objects in imagery data. This challenge resonates profoundly in the domain of geoscience and remote sensing, where high-fidelity detection of tiny objects can facilitate a myriad of applications ranging from urban planning to environmental monitoring. In this article, we propose a new framework, namely, DeNoising feature pyramid network (FPN) with Trans R-CNN (DNTR), to improve the performance of tiny object detection. DNTR consists of an easy plug-in design, DeNoising FPN (DN-FPN), and an effective Transformer-based detector, Trans region-based convolutional neural network (R-CNN). Specifically, feature fusion in the FPN is important for detecting multiscale objects. However, noisy features may be produced during the fusion process since there is no regularization between the features of different scales. Therefore, we introduce a DN-FPN module that utilizes contrastive learning to suppress noise in each level's features in the top-down path of FPN. Second, based on the two-stage framework, we replace the obsolete R-CNN detector with a novel Trans R-CNN detector to focus on the representation of tiny objects with self-attention. The experimental results manifest that our DNTR outperforms the baselines by at least 17.4% in terms of $\text {AP}_{vt}$ on the AI-TOD dataset and 9.6% in terms of average precision (AP) on the VisDrone dataset, respectively. Our code will be available at https://github.com/hoiliu-0801/DNTR.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [41] Faster R-CNN: an Approach to Real-Time Object Detection
    Gavrilescu, Raducu
    Fosalau, Cristian
    Zet, Cristian
    Skoczylas, Marcin
    Cotovanu, David
    2018 INTERNATIONAL CONFERENCE AND EXPOSITION ON ELECTRICAL AND POWER ENGINEERING (EPE), 2018, : 165 - 168
  • [42] Distributed Edge Cloud R-CNN for Real Time Object Detection
    Herrera, Joshua
    Demir, Mevlut A.
    Yousefi, Parsa
    Prevost, John J.
    Rad, Paul
    2018 WORLD AUTOMATION CONGRESS (WAC), 2018, : 146 - 151
  • [43] Rotated Faster R-CNN for Oriented Object Detection in Aerial Images
    Yang, Sheng
    Pei, Ziqiang
    Zhou, Feng
    Wang, Guoyou
    PROCEEDINGS OF 2020 3RD INTERNATIONAL CONFERENCE ON ROBOT SYSTEMS AND APPLICATIONS, ICRSA2020, 2020, : 35 - 39
  • [44] Faster R-CNN with Attention Feature Map for Robust Object Detection
    Lee, Youl-Kyeong
    Jo, Kang-Hyun
    FRONTIERS OF COMPUTER VISION, 2020, 1212 : 180 - 191
  • [45] Crowd R-CNN: An Object Detection Model Utilizing Crowdsourced Labels
    Hu, Yucheng
    Song, Meina
    ICVISP 2019: PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON VISION, IMAGE AND SIGNAL PROCESSING, 2019,
  • [46] Cascade R-CNN: High Quality Object Detection and Instance Segmentation
    Cai, Zhaowei
    Vasconcelos, Nuno
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (05) : 1483 - 1498
  • [47] An Automatic Object Detection and Location System applying Faster R-CNN
    Falquete, Rodrigo Bernardes
    Cavalieri, Daniel Cruz
    Pereira, Flavio Garcia
    2018 13TH IEEE INTERNATIONAL CONFERENCE ON INDUSTRY APPLICATIONS (INDUSCON), 2018, : 902 - 908
  • [48] Image Object Detection Method Based on Improved Faster R-CNN
    Yin, Xiuye
    Chen, Liyong
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2024, 33 (07)
  • [49] ATTENTION-ENHANCED AND MORE BALANCED R-CNN FOR OBJECT DETECTION
    Mei, Ruohong
    Wang, Haiying
    Men, Aidong
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2136 - 2140
  • [50] Design and Implementation of an Object Detection System Using Faster R-CNN
    Wang Cheng
    Peng Zhihao
    2019 INTERNATIONAL CONFERENCE ON ROBOTS & INTELLIGENT SYSTEM (ICRIS 2019), 2019, : 204 - 206