Automatic Network Architecture Search for RGB-D Semantic Segmentation

被引:2
|
作者
Wang, Wenna [1 ]
Zhuo, Tao [2 ]
Zhang, Xiuwei [1 ]
Sun, Mingjun [1 ]
Yin, Hanlin [1 ]
Xing, Yinghui [1 ]
Zhang, Yanning [1 ]
机构
[1] Northwestern Polytech Univ, Xian, Peoples R China
[2] Qilu Univ Technol, Shandong Acad Sci, Shandong Artificial Intelligence Inst, Jinan, Peoples R China
基金
中国国家自然科学基金;
关键词
RGB-D semantic segmentation; NAS; grid-like network-level search space; hierarchical cell-level search space; search strategy;
D O I
10.1145/3581783.3612288
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent RGB-D semantic segmentation networks are usually manually designed. However, due to limited human efforts and time costs, their performance might be inferior for complex scenarios. To address this issue, we propose the first Neural Architecture Search (NAS) method that designs the network automatically. Specifically, the target network consists of an encoder and a decoder. The encoder is designed with two independent branches, where each branch specializes in extracting features from RGB and depth images, respectively. The decoder fuses the features and generates the final segmentation result. Besides, for automatic network design, we design a grid-like network-level search space combined with a hierarchical cell-level search space. By further developing an effective gradient-based search strategy, the network structure with hierarchical cell architectures is discovered. Extensive results on two datasets show that the proposed method outperforms the state-of-the-art approaches, which achieves a mIoU score of 55.1% on the NYU-Depth v2 dataset and 50.3% on the SUN-RGBD dataset.
引用
收藏
页码:3777 / 3786
页数:10
相关论文
共 50 条
  • [21] Cross-modal attention fusion network for RGB-D semantic segmentation
    Zhao, Qiankun
    Wan, Yingcai
    Xu, Jiqian
    Fang, Lijin
    NEUROCOMPUTING, 2023, 548
  • [22] Interactive Efficient Multi-Task Network for RGB-D Semantic Segmentation
    Xu, Xinhua
    Liu, Jinfu
    Liu, Hong
    ELECTRONICS, 2023, 12 (18)
  • [23] CDMANet: central difference mutual attention network for RGB-D semantic segmentation
    Ge, Mengjiao
    Su, Wen
    Gao, Jinfeng
    Jia, Guoqiang
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):
  • [24] RAFNet: RGB-D attention feature fusion network for indoor semantic segmentation
    Yan, Xingchao
    Hou, Sujuan
    Karim, Awudu
    Jia, Weikuan
    DISPLAYS, 2021, 70
  • [25] Attention-Aware and Semantic-Aware Network for RGB-D Indoor Semantic Segmentation
    Duan L.-J.
    Sun Q.-C.
    Qiao Y.-H.
    Chen J.-C.
    Cui G.-Q.
    Jisuanji Xuebao/Chinese Journal of Computers, 2021, 44 (02): : 275 - 291
  • [26] 2.5D CONVOLUTION FOR RGB-D SEMANTIC SEGMENTATION
    Xing, Yajie
    Wang, Jingbo
    Chen, Xiaokang
    Zeng, Gang
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1410 - 1414
  • [27] Transformer fusion for indoor RGB-D semantic segmentation
    Wu, Zongwei
    Zhou, Zhuyun
    Allibert, Guillaume
    Stolz, Christophe
    Demonceaux, Cedric
    Ma, Chao
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 249
  • [28] DEPTH REMOVAL DISTILLATION FOR RGB-D SEMANTIC SEGMENTATION
    Fang, Tiyu
    Liang, Zhen
    Shao, Xiuli
    Dong, Zihao
    Li, Jinping
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2405 - 2409
  • [29] COUPLING TWO-STREAM RGB-D SEMANTIC SEGMENTATION NETWORK BY IDEMPOTENT MAPPINGS
    Xing, Yajie
    Wang, Jingbo
    Chen, Xiaokang
    Zeng, Gang
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1850 - 1854
  • [30] EFDCNet: Encoding fusion and decoding correction network for RGB-D indoor semantic segmentation
    Chen, Jianlin
    Li, Gongyang
    Zhang, Zhijiang
    Zeng, Dan
    IMAGE AND VISION COMPUTING, 2024, 142