Long time stability for the derivative nonlinear Schrödinger equation

被引:0
|
作者
Liu, Jianjun [1 ]
Xiang, Duohui [1 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610065, Peoples R China
关键词
Long time stability; Derivative nonlinear Schr & ouml; dinger; equation; Rational normal form; BIRKHOFF NORMAL-FORM; INVARIANT CANTOR MANIFOLDS; KLEIN-GORDON EQUATIONS; SCHRODINGER-EQUATION; PERIODIC SOLUTIONS; THEOREM; EXISTENCE;
D O I
10.1016/j.jmaa.2024.128394
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the long time dynamics of the solutions of the derivative nonlinear Schr & ouml;dinger equation on one dimensional torus without external parameters. By using rational normal form, we prove the long time stability for generic small initial data. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:37
相关论文
共 50 条